Quantum data-hiding scheme using orthogonal separable states
- URL: http://arxiv.org/abs/2502.18656v1
- Date: Tue, 25 Feb 2025 21:33:41 GMT
- Title: Quantum data-hiding scheme using orthogonal separable states
- Authors: Donghoon Ha, Jeong San Kim,
- Abstract summary: We consider bipartite quantum state discrimination and present a quantum data-hiding scheme utilizing a separable state ensemble.<n>As our scheme employs separable states of low-dimensional quantum systems, it becomes more feasible for practical implementation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider bipartite quantum state discrimination and present a quantum data-hiding scheme utilizing an orthogonal separable state ensemble. Using a bound on local minimum-error discrimination, we provide a sufficient condition for the separable state ensemble to be used in constructing a quantum data-hiding scheme. Our results are illustrated with various examples in bipartite quantum systems. As our scheme employs separable states of low-dimensional quantum systems, it becomes more feasible for practical implementation.
Related papers
- Bidirectional controlled quantum state preparation in high-dimensional quantum system [0.0]
High-dimensional quantum system exhibits unique advantages over the qubit system in some quantum information processing tasks.
We present a program for implementing bidirectional deterministic controlled remote quantum state preparation.
The evaluation of the performance shows that if the quNit is encoded in the spatial mode of single photons, our scheme can be accomplished solely using only linear optical elements.
arXiv Detail & Related papers (2025-01-06T12:54:02Z) - Quantum Homogenization as a Quantum Steady State Protocol on NISQ Hardware [42.52549987351643]
Quantum homogenization is a reservoir-based quantum state approximation protocol.<n>We extend the standard quantum homogenization protocol to the dynamically-equivalent ($mathttSWAP$)$alpha$ formulation.<n>We show that our proposed protocol yields a completely positive, trace preserving (CPTP) map under which the code subspace is correctable.
arXiv Detail & Related papers (2024-12-19T05:50:54Z) - Absolute dimensionality of quantum ensembles [41.94295877935867]
The dimension of a quantum state is traditionally seen as the number of superposed distinguishable states in a given basis.<n>We propose an absolute, i.e.basis-independent, notion of dimensionality for ensembles of quantum states.
arXiv Detail & Related papers (2024-09-03T09:54:15Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Multi-player quantum data hiding by nonlocal quantum state ensembles [0.0]
We provide multi-player quantum data hiding based on nonlocal quantum state ensembles.
Our data-hiding scheme can be used to hide multiple bits, unless all the players collaborate.
arXiv Detail & Related papers (2024-03-08T03:40:43Z) - Nonlocal quantum state ensembles and quantum data hiding [0.0]
We consider the discrimination of bipartite quantum states and establish a relation between nonlocal quantum state ensemble and quantum data hiding processing.
Our results are illustrated by examples in multidimensional bipartite quantum systems.
arXiv Detail & Related papers (2023-11-10T12:38:09Z) - Entanglement detection in arbitrary dimensional bipartite quantum
systems through partial realigned moments [0.0]
We propose a separability criterion for detecting bipartite entanglement in arbitrary dimensional quantum states.
Our approach enables detection of both distillable and bound entangled states through a common framework.
arXiv Detail & Related papers (2023-02-09T17:44:46Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Single-copies estimation of entanglement negativity [1.7179583883220435]
Entanglement plays a central role in quantum information processing.
We propose a scheme to estimate the entanglement negativity of any bi- partition of a composite system.
arXiv Detail & Related papers (2020-04-23T17:57:01Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.