論文の概要: One Set to Rule Them All: How to Obtain General Chemical Conditions via Bayesian Optimization over Curried Functions
- arxiv url: http://arxiv.org/abs/2502.18966v1
- Date: Wed, 26 Feb 2025 09:25:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:57:01.021021
- Title: One Set to Rule Them All: How to Obtain General Chemical Conditions via Bayesian Optimization over Curried Functions
- Title(参考訳): 一般の化学条件をキュレート関数に対するベイジアン最適化によって達成する方法
- Authors: Stefan P. Schmid, Ella Miray Rajaonson, Cher Tian Ser, Mohammad Haddadnia, Shi Xuan Leong, Alán Aspuru-Guzik, Agustinus Kristiadi, Kjell Jorner, Felix Strieth-Kalthoff,
- Abstract要約: 一般性指向型BOが一般最適化の識別をいかに加速するかを考察する。
一般性指向の最適化では、パラメータとタスク選択を分離する単純なミオピック最適化戦略がより複雑なものに相容れないことが分かる。
- 参考スコア(独自算出の注目度): 3.98436574964006
- License:
- Abstract: General parameters are highly desirable in the natural sciences - e.g., chemical reaction conditions that enable high yields across a range of related transformations. This has a significant practical impact since those general parameters can be transferred to related tasks without the need for laborious and time-intensive re-optimization. While Bayesian optimization (BO) is widely applied to find optimal parameter sets for specific tasks, it has remained underused in experiment planning towards such general optima. In this work, we consider the real-world problem of condition optimization for chemical reactions to study how performing generality-oriented BO can accelerate the identification of general optima, and whether these optima also translate to unseen examples. This is achieved through a careful formulation of the problem as an optimization over curried functions, as well as systematic evaluations of generality-oriented strategies for optimization tasks on real-world experimental data. We find that for generality-oriented optimization, simple myopic optimization strategies that decouple parameter and task selection perform comparably to more complex ones, and that effective optimization is merely determined by an effective exploration of both parameter and task space.
- Abstract(参考訳): 一般パラメータは自然科学において非常に望ましいもので、例えば化学反応条件は、関連する変換の範囲で高い収率を可能にする。
これは、これらの一般的なパラメータを、手間と時間を要する再最適化を必要とせずに、関連するタスクに転送できるため、重大な実践的影響がある。
ベイズ最適化(BO)は、特定のタスクに対して最適なパラメータセットを見つけるために広く応用されているが、そのような一般的な最適化に向けての実験計画においてはまだ未熟である。
本研究では,化学反応における条件最適化の現実的問題について考察し,一般性指向型BOが一般最適性の同定をいかに加速するか,また,これらの最適化が未知の例にも変換されるかどうかを考察する。
これは、計算関数に対する最適化としての問題を慎重に定式化し、実世界の実験データ上での最適化タスクに対する一般性指向の戦略を体系的に評価することで達成される。
一般性指向の最適化では、パラメータとタスク選択を分離する単純なミオピック最適化戦略がより複雑なものに比較可能であり、効果的な最適化はパラメータとタスク空間の両方を効果的に探索することによってのみ決定される。
関連論文リスト
- A Novel Unified Parametric Assumption for Nonconvex Optimization [53.943470475510196]
非最適化は機械学習の中心であるが、一般の非凸性は弱い収束を保証するため、他方に比べて悲観的すぎる。
非凸アルゴリズムに新しい統一仮定を導入する。
論文 参考訳(メタデータ) (2025-02-17T21:25:31Z) - Localized Zeroth-Order Prompt Optimization [54.964765668688806]
そこで我々は,ZOPO(Localized zeroth-order prompt optimization)という新しいアルゴリズムを提案する。
ZOPOはニューラル・タンジェント・カーネルをベースとしたガウス法を標準ゼロ階次最適化に取り入れ、高速な局所最適探索を高速化する。
注目すべきは、ZOPOは最適化性能とクエリ効率の両方の観点から、既存のベースラインを上回っていることだ。
論文 参考訳(メタデータ) (2024-03-05T14:18:15Z) - A General Framework for User-Guided Bayesian Optimization [51.96352579696041]
コラボ (ColaBO) は、典型的なカーネル構造を超越した事前信念のための最初のベイズ原理の枠組みである。
我々は,ColaBOの事前情報が正確である場合に最適化を著しく高速化し,ミスリード時のほぼ既定性能を維持する能力を実証的に実証した。
論文 参考訳(メタデータ) (2023-11-24T18:27:26Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Optimistic Optimization of Gaussian Process Samples [30.226274682578172]
競合する、計算的により効率的でグローバルな最適化フレームワークは楽観的な最適化であり、これは探索空間の幾何学に関する事前知識を相似関数として利用している。
幾何的探索と確率的探索の間には新たな研究領域があり、ベイズ最適化の重要な機能を保ちながら、従来のベイズ最適化よりも大幅に高速に実行される方法がある。
論文 参考訳(メタデータ) (2022-09-02T09:06:24Z) - Adaptive Optimizer for Automated Hyperparameter Optimization Problem [0.0]
本稿では,最適化プロセスにおいて適切なパラメータを自動的に調整する適応型フレームワークを構築可能な汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-28T13:58:10Z) - Are we Forgetting about Compositional Optimisers in Bayesian
Optimisation? [66.39551991177542]
本稿では,グローバル最適化のためのサンプル手法を提案する。
この中、重要なパフォーマンス決定の自明さは、取得機能を最大化することです。
3958実験における機能最適化手法の実証的利点を強調する。
論文 参考訳(メタデータ) (2020-12-15T12:18:38Z) - BOSH: Bayesian Optimization by Sampling Hierarchically [10.10241176664951]
本稿では,階層的なガウス過程と情報理論の枠組みを組み合わせたBOルーチンを提案する。
BOSHは, ベンチマーク, シミュレーション最適化, 強化学習, ハイパーパラメータチューニングタスクにおいて, 標準BOよりも効率的で高精度な最適化を実現する。
論文 参考訳(メタデータ) (2020-07-02T07:35:49Z) - Additive Tree-Structured Covariance Function for Conditional Parameter
Spaces in Bayesian Optimization [34.89735938765757]
木構造関数への加法的仮定を一般化する。
パラメータ空間の構造情報と加法仮定をBOループに組み込むことで,取得関数を最適化する並列アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-06-21T11:21:55Z) - Composition of kernel and acquisition functions for High Dimensional
Bayesian Optimization [0.1749935196721634]
目的関数の追加性を用いて、ベイズ最適化のカーネルと取得関数の両方をマッピングする。
このap-proachは確率的代理モデルの学習/更新をより効率的にする。
都市給水システムにおけるポンプの制御を実運用に適用するための結果が提示された。
論文 参考訳(メタデータ) (2020-03-09T15:45:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。