Forecasting intermittent time series with Gaussian Processes and Tweedie likelihood
- URL: http://arxiv.org/abs/2502.19086v2
- Date: Thu, 27 Feb 2025 10:32:12 GMT
- Title: Forecasting intermittent time series with Gaussian Processes and Tweedie likelihood
- Authors: Stefano Damato, Dario Azzimonti, Giorgio Corani,
- Abstract summary: We introduce the use of Gaussian Processes (GPs) for the probabilistic forecasting of intermittent time series.<n>We couple the latent GP variable with two types of forecast distributions: the negative binomial (NegBinGP) and the Tweedie distribution (TweedieGP)
- Score: 0.840358257755792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the use of Gaussian Processes (GPs) for the probabilistic forecasting of intermittent time series. The model is trained in a Bayesian framework that accounts for the uncertainty about the latent function and marginalizes it out when making predictions. We couple the latent GP variable with two types of forecast distributions: the negative binomial (NegBinGP) and the Tweedie distribution (TweedieGP). While the negative binomial has already been used in forecasting intermittent time series, this is the first time in which a fully parameterized Tweedie density is used for intermittent time series. We properly evaluate the Tweedie density, which is both zero-inflated and heavy tailed, avoiding simplifying assumptions made in existing models. We test our models on thousands of intermittent count time series. Results show that our models provide consistently better probabilistic forecasts than the competitors. In particular, TweedieGP obtains the best estimates of the highest quantiles, thus showing that it is more flexible than NegBinGP.
Related papers
- An evidential time-to-event prediction model based on Gaussian random fuzzy numbers [12.753099158148887]
We introduce an evidential model for time-to-event prediction with censored data.
Uncertainty on event time is quantified by Gaussian random fuzzy numbers.
arXiv Detail & Related papers (2024-06-19T12:14:45Z) - Attention-Based Ensemble Pooling for Time Series Forecasting [55.2480439325792]
We propose a method for pooling that performs a weighted average over candidate model forecasts.
We test this method on two time-series forecasting problems: multi-step forecasting of the dynamics of the non-stationary Lorenz 63 equation, and one-step forecasting of the weekly incident deaths due to COVID-19.
arXiv Detail & Related papers (2023-10-24T22:59:56Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - A Transformer-based Diffusion Probabilistic Model for Heart Rate and Blood Pressure Forecasting in Intensive Care Unit [1.0348143884883134]
This study proposes a novel deep learning approach for forecasting Heart Rate (HR), Systolic Blood Pressure (SBP), and Diastolic Blood Pressure (DBP) in the ICU.
We extracted $24,886$ ICU stays from the MIMIC-III database which contains data from over $46$ thousand patients, to train and test the model.
arXiv Detail & Related papers (2023-01-16T22:22:04Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Conditional Approximate Normalizing Flows for Joint Multi-Step
Probabilistic Electricity Demand Forecasting [32.907448044102864]
We introduce the conditional approximate normalizing flow (CANF) to make probabilistic multi-step time-series forecasts when correlations are present over long time horizons.
Empirical results show that conditional approximate normalizing flows outperform other methods in terms of multi-step forecast accuracy and lead to up to 10x better scheduling decisions.
arXiv Detail & Related papers (2022-01-08T03:42:12Z) - Comparing Sequential Forecasters [35.38264087676121]
Consider two forecasters, each making a single prediction for a sequence of events over time.
How might we compare these forecasters, either online or post-hoc, while avoiding unverifiable assumptions on how the forecasts and outcomes were generated?
We present novel sequential inference procedures for estimating the time-varying difference in forecast scores.
We empirically validate our approaches by comparing real-world baseball and weather forecasters.
arXiv Detail & Related papers (2021-09-30T22:54:46Z) - Complex Event Forecasting with Prediction Suffix Trees: Extended
Technical Report [70.7321040534471]
Complex Event Recognition (CER) systems have become popular in the past two decades due to their ability to "instantly" detect patterns on real-time streams of events.
There is a lack of methods for forecasting when a pattern might occur before such an occurrence is actually detected by a CER engine.
We present a formal framework that attempts to address the issue of Complex Event Forecasting.
arXiv Detail & Related papers (2021-09-01T09:52:31Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Deep Distributional Time Series Models and the Probabilistic Forecasting
of Intraday Electricity Prices [0.0]
We propose two approaches to constructing deep time series probabilistic models.
The first is where the output layer of the ESN has disturbances and a shrinkage prior for additional regularization.
The second approach employs the implicit copula of an ESN with Gaussian disturbances, which is a deep copula process on the feature space.
arXiv Detail & Related papers (2020-10-05T08:02:29Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.