A Transformer-based Diffusion Probabilistic Model for Heart Rate and Blood Pressure Forecasting in Intensive Care Unit
- URL: http://arxiv.org/abs/2301.06625v5
- Date: Wed, 3 Apr 2024 21:24:18 GMT
- Title: A Transformer-based Diffusion Probabilistic Model for Heart Rate and Blood Pressure Forecasting in Intensive Care Unit
- Authors: Ping Chang, Huayu Li, Stuart F. Quan, Shuyang Lu, Shu-Fen Wung, Janet Roveda, Ao Li,
- Abstract summary: This study proposes a novel deep learning approach for forecasting Heart Rate (HR), Systolic Blood Pressure (SBP), and Diastolic Blood Pressure (DBP) in the ICU.
We extracted $24,886$ ICU stays from the MIMIC-III database which contains data from over $46$ thousand patients, to train and test the model.
- Score: 1.0348143884883134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background and Objective: Vital sign monitoring in the Intensive Care Unit (ICU) is crucial for enabling prompt interventions for patients. This underscores the need for an accurate predictive system. Therefore, this study proposes a novel deep learning approach for forecasting Heart Rate (HR), Systolic Blood Pressure (SBP), and Diastolic Blood Pressure (DBP) in the ICU. Methods: We extracted $24,886$ ICU stays from the MIMIC-III database which contains data from over $46$ thousand patients, to train and test the model. The model proposed in this study, Transformer-based Diffusion Probabilistic Model for Sparse Time Series Forecasting (TDSTF), merges Transformer and diffusion models to forecast vital signs. The TDSTF model showed state-of-the-art performance in predicting vital signs in the ICU, outperforming other models' ability to predict distributions of vital signs and being more computationally efficient. The code is available at https://github.com/PingChang818/TDSTF. Results: The results of the study showed that TDSTF achieved a Standardized Average Continuous Ranked Probability Score (SACRPS) of $0.4438$ and a Mean Squared Error (MSE) of $0.4168$, an improvement of $18.9\%$ and $34.3\%$ over the best baseline model, respectively. The inference speed of TDSTF is more than $17$ times faster than the best baseline model. Conclusion: TDSTF is an effective and efficient solution for forecasting vital signs in the ICU, and it shows a significant improvement compared to other models in the field.
Related papers
- VAPO: Efficient and Reliable Reinforcement Learning for Advanced Reasoning Tasks [49.0793012627959]
We present VAPO, a novel framework tailored for reasoning models within the value-based paradigm.
VAPO attains a state-of-the-art score of $mathbf60.4$.
In direct comparison under identical experimental settings, VAPO outperforms the previously reported results of DeepSeek-R1-Zero-Qwen-32B and DAPO by more than 10 points.
arXiv Detail & Related papers (2025-04-07T14:21:11Z) - Continuous Cardiac Arrest Prediction in ICU using PPG Foundation Model [6.469423282286416]
Non-invasive patient monitoring for tracking and predicting acute health events is an emerging area of research.
We present IHCA prediction results in ICU patients using only unimodal (signal waveform) deep representations.
We also provide comprehensive analysis of our model through architectural tuning and PaCMAP visualization of patient health trajectory in latent space.
arXiv Detail & Related papers (2025-02-12T18:01:04Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
Photoplethysmography and electrocardiography can potentially enable continuous blood pressure (BP) monitoring.
Yet accurate and robust machine learning (ML) models remains challenging due to variability in data quality and patient-specific factors.
In this work, we investigate whether a model pre-trained on one modality can effectively be exploited to improve the accuracy of a different signal type.
Our approach achieves near state-of-the-art accuracy for diastolic BP and surpasses by 1.5x the accuracy of prior works for systolic BP.
arXiv Detail & Related papers (2025-02-10T13:33:12Z) - Mortality Prediction of Pulmonary Embolism Patients with Deep Learning and XGBoost [0.5942186563711294]
Pulmonary Embolism (PE) is a leading cause of mortality and critical illness.
Conventional clinical methods have limited success in predicting 30-day in-hospital mortality of PE patients.
arXiv Detail & Related papers (2024-11-27T05:15:55Z) - Enhanced Prediction of Ventilator-Associated Pneumonia in Patients with Traumatic Brain Injury Using Advanced Machine Learning Techniques [0.0]
Ventilator-associated pneumonia (VAP) in traumatic brain injury (TBI) patients poses a significant mortality risk.
Timely detection and prognostication of VAP in TBI patients are crucial to improve patient outcomes and alleviate the strain on healthcare resources.
We implemented six machine learning models using the MIMIC-III database.
arXiv Detail & Related papers (2024-08-02T09:44:18Z) - Vital Sign Forecasting for Sepsis Patients in ICUs [5.543372375499915]
This paper uses state-of-the-art deep learning (DL) architectures to introduce a multi-step forecasting system.
We introduce a DL-based vital sign forecasting system that predicts up to 3 hours of future vital signs from 6 hours of past data.
We evaluate the performance of our models using mean squared error (MSE) and dynamic time warping (DTW) metrics.
arXiv Detail & Related papers (2023-11-08T15:47:58Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Integration of neural network and fuzzy logic decision making compared
with bilayered neural network in the simulation of daily dew point
temperature [0.8808021343665321]
dew point temperature (DPT) is simulated using the data-driven approach.
Various input patterns, namely T min, T max, and T mean, are utilized for training the architecture.
arXiv Detail & Related papers (2022-02-23T14:25:13Z) - Machine-Learning Identification of Hemodynamics in Coronary Arteries in
the Presence of Stenosis [0.0]
An artificial neural network (ANN) model is trained using synthetic data to predict the pressure and velocity within the arterial network.
The efficiency of the model was verified using three real geometries of LAD's vessels.
arXiv Detail & Related papers (2021-11-02T23:51:06Z) - CSDI: Conditional Score-based Diffusion Models for Probabilistic Time
Series Imputation [107.63407690972139]
Conditional Score-based Diffusion models for Imputation (CSDI) is a novel time series imputation method that utilizes score-based diffusion models conditioned on observed data.
CSDI improves by 40-70% over existing probabilistic imputation methods on popular performance metrics.
In addition, C reduces the error by 5-20% compared to the state-of-the-art deterministic imputation methods.
arXiv Detail & Related papers (2021-07-07T22:20:24Z) - COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital
Contact Tracing [68.68882022019272]
COVI-AgentSim is an agent-based compartmental simulator based on virology, disease progression, social contact networks, and mobility patterns.
We use COVI-AgentSim to perform cost-adjusted analyses comparing no DCT to: 1) standard binary contact tracing (BCT) that assigns binary recommendations based on binary test results; and 2) a rule-based method for feature-based contact tracing (FCT) that assigns a graded level of recommendation based on diverse individual features.
arXiv Detail & Related papers (2020-10-30T00:47:01Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z) - A Physiology-Driven Computational Model for Post-Cardiac Arrest Outcome
Prediction [0.7930054475711718]
The aim of this study was to build computational models to predict post-CA outcome.
We hypothesized that model performance could be enhanced by integrating physiological time series (PTS) data and by training machine learning (ML) classifiers.
Results attest to the effectiveness of ML models for post-CA predictive modeling and suggest that PTS recorded in very early phase after resuscitation encode short-term outcome probabilities.
arXiv Detail & Related papers (2020-02-09T07:53:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.