Software demodulation of weak radio signals using convolutional neural network
- URL: http://arxiv.org/abs/2502.19097v1
- Date: Wed, 26 Feb 2025 12:41:25 GMT
- Title: Software demodulation of weak radio signals using convolutional neural network
- Authors: Mykola Kozlenko, Ihor Lazarovych, Valerii Tkachuk, Vira Vialkova,
- Abstract summary: We investigated the software demodulation of the multiple frequency shift keying weak signals transmitted with JT65A communication protocol.<n>We proved that the interference immunity is about 1.5 dB less than the theoretical limit of non-coherent demodulation of MFSK signals.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we proposed the use of JT65A radio communication protocol for data exchange in wide-area monitoring systems in electric power systems. We investigated the software demodulation of the multiple frequency shift keying weak signals transmitted with JT65A communication protocol using deep convolutional neural network. We presented the demodulation performance in form of symbol and bit error rates. We focused on the interference immunity of the protocol over an additive white Gaussian noise with average signal-to-noise ratios in the range from -30 dB to 0 dB, which was obtained for the first time. We proved that the interference immunity is about 1.5 dB less than the theoretical limit of non-coherent demodulation of orthogonal MFSK signals.
Related papers
- Software defined demodulation of multiple frequency shift keying with dense neural network for weak signal communications [0.0]
We present the symbol and bit error rate performance of the weak signal digital communications system.<n>We investigated the interference over an additive white Gaussian noise with average signal-to-noise ratios from -20 dB to 0 dB.
arXiv Detail & Related papers (2025-02-22T22:21:25Z) - Deep Active Speech Cancellation with Mamba-Masking Network [62.73250985838971]
We present a novel deep learning network for Active Speech Cancellation (ASC)<n>The proposed Mamba-Masking architecture introduces a masking mechanism that directly interacts with the encoded reference signal.<n> Experimental results demonstrate substantial performance gains, achieving up to 7.2dB improvement in ANC scenarios and 6.2dB in ASC.
arXiv Detail & Related papers (2025-02-03T09:22:26Z) - RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
We address the critical problem of interference rejection in radio-frequency (RF) signals using a data-driven approach that leverages deep-learning methods.
A primary contribution of this paper is the introduction of the RF Challenge, which is a publicly available, diverse RF signal dataset.
arXiv Detail & Related papers (2024-09-13T13:53:41Z) - Diffusion-Driven Semantic Communication for Generative Models with Bandwidth Constraints [66.63250537475973]
This paper introduces a diffusion-driven semantic communication framework with advanced VAE-based compression for bandwidth-constrained generative model.<n>Our experimental results demonstrate significant improvements in pixel-level metrics like peak signal to noise ratio (PSNR) and semantic metrics like learned perceptual image patch similarity (LPIPS)
arXiv Detail & Related papers (2024-07-26T02:34:25Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
This work proposes a novel architecture that integrates a wake-up radio mechanism within a split computing system consisting of remote, wirelessly connected, NPUs.
A key challenge in the design of a wake-up radio-based neuromorphic split computing system is the selection of thresholds for sensing, wake-up signal detection, and decision making.
arXiv Detail & Related papers (2024-04-02T10:19:04Z) - Deep Learning-Based Frequency Offset Estimation [7.143765507026541]
We show the utilization of deep learning for CFO estimation by employing a residual network (ResNet) to learn and extract signal features.
In comparison to the commonly used traditional CFO estimation methods, our proposed IQ-ResNet method exhibits superior performance across various scenarios.
arXiv Detail & Related papers (2023-11-08T13:56:22Z) - Waveform Manipulation Against DNN-based Modulation Classification Attacks [2.8475397246467575]
We propose a method for defending against an eavesdropper that uses a Deep Neural Network (DNN) for learning the modulation of wireless communication signals.
Our method is based on manipulating the emitted waveform with the aid of a continuous time frequency-modulated (FM) obfuscating signal that is mixed with the modulated data.
The results indicate that careful selection of the parameters of the obfuscating waveform can drop classification performance at the eavesdropper to less than 10% in AWGN and fading channels with no performance loss at the LRx.
arXiv Detail & Related papers (2023-10-03T09:03:34Z) - Modulation Classification Through Deep Learning Using Resolution
Transformed Spectrograms [3.9511559419116224]
We propose a scheme for Automatic Modulation Classification (AMC) using modern architectures of Convolutional Neural Networks (CNN)
We perform resolution transformation of spectrograms that results up to 99.61% of computational load reduction and 8x faster conversion from the received I/Q data.
The performance is evaluated on existing CNN models including SqueezeNet, Resnet-50, InceptionResnet-V2, Inception-V3, VGG-16 and Densenet-201.
arXiv Detail & Related papers (2023-06-06T16:14:15Z) - On Neural Architectures for Deep Learning-based Source Separation of
Co-Channel OFDM Signals [104.11663769306566]
We study the single-channel source separation problem involving frequency-division multiplexing (OFDM) signals.
We propose critical domain-informed modifications to the network parameterization, based on insights from OFDM structures.
arXiv Detail & Related papers (2023-03-11T16:29:13Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - Deep Learning-Based Synchronization for Uplink NB-IoT [72.86843435313048]
We propose a neural network (NN)-based algorithm for device detection and time of arrival (ToA) estimation for the narrowband physical random-access channel (NPRACH) of narrowband internet of things (NB-IoT)
The introduced NN architecture leverages residual convolutional networks as well as knowledge of the preamble structure of the 5G New Radio (5G NR) specifications.
arXiv Detail & Related papers (2022-05-22T12:16:43Z) - Waveform Learning for Next-Generation Wireless Communication Systems [16.26230847183709]
We propose a learning-based method for the joint design of a transmit and receive filter, the constellation geometry and associated bit labeling, as well as a neural network (NN)-based detector.
The method maximizes an achievable information rate, while simultaneously satisfying constraints on the adjacent channel leakage ratio (ACLR) and peak-to-average power ratio (PAPR)
arXiv Detail & Related papers (2021-09-02T14:51:16Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.