論文の概要: Set and functional prediction: randomness, exchangeability, and conformal
- arxiv url: http://arxiv.org/abs/2502.19254v1
- Date: Wed, 26 Feb 2025 16:00:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 15:24:46.571617
- Title: Set and functional prediction: randomness, exchangeability, and conformal
- Title(参考訳): 集合と機能予測:ランダム性、交換可能性、および整合性
- Authors: Vladimir Vovk,
- Abstract要約: 本稿では、より一般的なランダム性予測や交換可能性予測と比較して、共形予測の効率性について研究を継続する。
料金は、ラベル空間上の幅広い確率測度に関して、効率性は平均でのみ達成される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper continues the study of the efficiency of conformal prediction as compared with more general randomness prediction and exchangeability prediction. It does not restrict itself to the case of classification, and our results will also be applicable to the case of regression. The price to pay is that efficiency will be attained only on average, albeit with respect to a wide range of probability measures on the label space.
- Abstract(参考訳): 本稿では、より一般的なランダム性予測や交換可能性予測と比較して、共形予測の効率性について研究を継続する。
これは分類の場合に限らず、回帰の場合にも適用できる。
料金は、ラベル空間上の幅広い確率測度に関して、効率性は平均でのみ達成される。
関連論文リスト
- Optimal Conformal Prediction under Epistemic Uncertainty [61.46247583794497]
コンフォーマル予測(CP)は不確実性を表すための一般的なフレームワークである。
条件付きカバレッジを保証する最小の予測セットを生成するBernoulli予測セット(BPS)を導入する。
1次予測を与えられた場合、BPSはよく知られた適応予測セット(APS)に還元する。
論文 参考訳(メタデータ) (2025-05-25T08:32:44Z) - Inductive randomness predictors: beyond conformal [0.0]
本稿では、帰納的共形予測器の適切なスーパーセットを形成する帰納的ランダム性予測器を紹介する。
その結果、すべての非自明な帰納的共形予測器は、帰納的ランダム性予測器によって厳密に支配されていることがわかった。
論文 参考訳(メタデータ) (2025-03-04T17:26:25Z) - Conformal Prediction Sets with Improved Conditional Coverage using Trust Scores [52.92618442300405]
有限サンプルにおいて、正確に分布のない条件付きカバレッジを達成することは不可能である。
本稿では,最も重要となる範囲を対象とするコンフォメーション予測アルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-01-17T12:01:56Z) - Efficient pooling of predictions via kernel embeddings [0.24578723416255752]
確率的予測は、可能な結果の集合上の確率分布である。
それらは典型的には、個々の予測分布を線形にプールすることで結合される。
各予測に割り当てられた重量は、過去の性能に基づいて推定できる。
これは、いくつかのトレーニングデータに対して適切なスコアリングルールを最適化する重みを見つけることで達成できる。
論文 参考訳(メタデータ) (2024-11-25T10:04:37Z) - Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
生成モデルは出力に対する厳密な統計的保証を欠いている。
厳密な統計的保証を満たす予測セットを生成する逐次共形予測法を提案する。
このことは、高い確率で予測セットが少なくとも1つの許容可能な(または有効な)例を含むことを保証している。
論文 参考訳(メタデータ) (2024-10-02T15:26:52Z) - Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
実際のデータストリームは、分散シフトやフィードバックループ、敵アクターによって予測不可能に変化する可能性がある。
データがどのように進化するかに関わらず、有効な不確実性推定を保証するための予測フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-27T21:46:42Z) - Beyond Conformal Predictors: Adaptive Conformal Inference with Confidence Predictors [0.0]
コンフォーマル予測は、ユーザ指定の重要度レベルで有効な予測セットを保証するために、交換可能なデータを必要とする。
適応共形推論 (Adaptive conformal inference, ACI) は、この制限に対処するために導入された。
我々は、ACIが共形予測器を必要とせず、より一般的な信頼性予測器で実装可能であることを示す。
論文 参考訳(メタデータ) (2024-09-23T21:02:33Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Invariant Probabilistic Prediction [45.90606906307022]
任意の分布シフトは、一般に不変かつ頑健な確率的予測を認めないことを示す。
Invariant probabilistic predictions called IPP, and study the consistency of the underlying parameters。
論文 参考訳(メタデータ) (2023-09-18T18:50:24Z) - On the Expected Size of Conformal Prediction Sets [24.161372736642157]
分割共形予測フレームワークを用いて,予測セットの予測サイズを理論的に定量化する。
この正確な定式化は通常直接計算できないので、点推定と高確率境界間隔を導出する。
回帰と分類の両問題に対する実世界のデータセットを用いた実験により,結果の有効性を裏付ける。
論文 参考訳(メタデータ) (2023-06-12T17:22:57Z) - Distribution-Free Finite-Sample Guarantees and Split Conformal
Prediction [0.0]
分割共形予測は、最小分布自由仮定の下で有限サンプル保証を得るための有望な道を表す。
1940年代に開発された分割共形予測と古典的寛容予測との関連性を強調した。
論文 参考訳(メタデータ) (2022-10-26T14:12:24Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
本稿では,特徴空間への共形予測の範囲を拡大する特徴共形予測を提案する。
理論的観点からは、特徴共形予測は軽度の仮定の下で正則共形予測よりも確実に優れていることを示す。
提案手法は,バニラ共形予測だけでなく,他の適応共形予測手法と組み合わせることができる。
論文 参考訳(メタデータ) (2022-10-01T02:57:37Z) - Probabilistic Conformal Prediction Using Conditional Random Samples [73.26753677005331]
PCPは、不連続な予測セットによって対象変数を推定する予測推論アルゴリズムである。
効率的で、明示的または暗黙的な条件生成モデルと互換性がある。
論文 参考訳(メタデータ) (2022-06-14T03:58:03Z) - Selective Regression Under Fairness Criteria [30.672082160544996]
少数派集団のパフォーマンスは、カバー範囲を減らしながら低下する場合もある。
満足度基準を満たす特徴を構築できれば、そのような望ましくない行動は避けられることを示す。
論文 参考訳(メタデータ) (2021-10-28T19:05:12Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
本稿では,将来の軌道の予測分布に関連する不確かさを正確に予測する手法を提案する。
我々のアプローチであるCovariaceNetは、ガウス潜在変数を持つ条件付き生成モデルに基づいている。
論文 参考訳(メタデータ) (2021-09-07T09:38:24Z) - Optimized conformal classification using gradient descent approximation [0.2538209532048866]
コンフォーマル予測器は、ユーザ定義の信頼性レベルで予測を行うことができる。
我々は,共形予測器を直接最大予測効率で訓練する手法を検討する。
実世界の複数のデータセット上で本手法を検証し,本手法が有望であることを示す。
論文 参考訳(メタデータ) (2021-05-24T13:14:41Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
不確かさが唯一の確実性である。
伝統的に、直接回帰定式化を考慮し、ある確率分布の族に出力空間を変更することによって不確実性をモデル化する。
現在のレグレッション技術における不確実性をモデル化する方法は、未解決の問題である。
論文 参考訳(メタデータ) (2021-03-25T06:56:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。