論文の概要: Deep learning and classical computer vision techniques in medical image analysis: Case studies on brain MRI tissue segmentation, lung CT COPD registration, and skin lesion classification
- arxiv url: http://arxiv.org/abs/2502.19258v1
- Date: Wed, 26 Feb 2025 16:05:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:56:32.293422
- Title: Deep learning and classical computer vision techniques in medical image analysis: Case studies on brain MRI tissue segmentation, lung CT COPD registration, and skin lesion classification
- Title(参考訳): 医用画像解析における深層学習と古典的コンピュータビジョン技術:脳MRI組織分画、肺CT COPD登録、皮膚病変分類の事例研究
- Authors: Anyimadu Daniel Tweneboah, Suleiman Taofik Ahmed, Hossain Mohammad Imran,
- Abstract要約: 本研究は,複数の画像モダリティにまたがるセグメンテーション,登録,分類タスクを体系的に評価した最初のものである。
脳組織のセグメンテーションでは、3D DLモデルは2Dモデルとパッチベースモデルより優れており、特に nnU-Net の Dice は 0.9397 である。
肺CTでは、古典エラスティス法がDLモデルより優れ、最小目標登録誤差(TRE)は6.68mmであった。
皮膚病変分類では、InceptionResNetV2やResNet50のようなDLモデルのアンサンブルが優れ、最大90.44%、バイナリとマルチの93.62%の精度が達成された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Medical imaging spans diverse tasks and modalities which play a pivotal role in disease diagnosis, treatment planning, and monitoring. This study presents a novel exploration, being the first to systematically evaluate segmentation, registration, and classification tasks across multiple imaging modalities. Integrating both classical and deep learning (DL) approaches in addressing brain MRI tissue segmentation, lung CT image registration, and skin lesion classification from dermoscopic images, we demonstrate the complementary strengths of these methodologies in diverse applications. For brain tissue segmentation, 3D DL models outperformed 2D and patch-based models, specifically nnU-Net achieving Dice of 0.9397, with 3D U-Net models on ResNet34 backbone, offering competitive results with Dice 0.8946. Multi-Atlas methods provided robust alternatives for cases where DL methods are not feasible, achieving average Dice of 0.7267. In lung CT registration, classical Elastix-based methods outperformed DL models, achieving a minimum Target Registration Error (TRE) of 6.68 mm, highlighting the effectiveness of parameter tuning. HighResNet performed best among DL models with a TRE of 7.40 mm. For skin lesion classification, ensembles of DL models like InceptionResNetV2 and ResNet50 excelled, achieving up to 90.44%, and 93.62% accuracies for binary and multiclass classification respectively. Also, adopting One-vs-All method, DL attained accuracies of 94.64% (mel vs. others), 95.35% (bcc vs. others), and 96.93% (scc vs. others), while ML models specifically Multi-Layer Perceptron (MLP) on handcrafted features offered interpretable alternatives with 85.04% accuracy using SMOTE for class imbalance correction on the multi-class task and 83.27% on the binary-class task. Links to source code are available on request.
- Abstract(参考訳): 医療画像は、病気の診断、治療計画、モニタリングにおいて重要な役割を果たしている様々なタスクやモダリティにまたがっている。
本研究は,複数の画像モダリティにまたがるセグメンテーション,登録,分類タスクを体系的に評価した最初の試みである。
脳MRI組織分画、肺CT画像登録、皮膚病変分類における古典的および深層学習(DL)のアプローチを統合することにより、これらの手法の相補的強みを多様な用途で示す。
脳組織のセグメンテーションでは、3D DLモデルは2Dおよびパッチベースのモデル、特にDiceの0.9397を達成し、ResNet34の3D U-NetモデルはDice 0.8946と競合する結果を与えた。
マルチアトラス法は、DL法が実現不可能な場合に対して堅牢な代替手段を提供し、平均Diceは0.7267である。
肺CTでは,古典エラスティス法がDLモデルより優れ,最低目標登録誤差(TRE)は6.68mmであり,パラメータチューニングの有効性を強調した。
HighResNetは、TREが7.40mmのDLモデルの中で最高の性能を発揮した。
皮膚病変の分類では、InceptionResNetV2やResNet50のようなDLモデルのアンサンブルが優れ、それぞれ90.44%、93.62%の2進分類と多等分類が達成された。
また、1-vs-Allメソッドを採用すると、DLは94.64%(メル対他)、95.35%(bcc対他)、96.93%(scc対他)のアキュラシーを達成し、MLP(Multi-Layer Perceptron)はマルチクラスタスクのクラス不均衡補正にSMOTEを使用して85.04%の精度で解釈可能な代替品を提供する。
ソースコードへのリンクは、オンデマンドで入手できる。
関連論文リスト
- Comparative Study of Probabilistic Atlas and Deep Learning Approaches for Automatic Brain Tissue Segmentation from MRI Using N4 Bias Field Correction and Anisotropic Diffusion Pre-processing Techniques [0.0]
本研究では,確率ATLAS,U-Net,nnU-Net,LinkNetなど,様々なセグメンテーションモデルの比較分析を行う。
以上の結果から,3D nnU-Netモデルが他のモデルよりも優れており,Dice Coefficientスコア(0.937 + 0.012)が最も高い結果を得た。
この結果は、特にN4 Bias Field CorrectionとAnisotropic Diffusion Pre-processingと組み合わせた場合、脳組織セグメンテーションにおけるnnU-Netモデルの優位性を強調した。
論文 参考訳(メタデータ) (2024-11-08T10:07:03Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
本稿では,MRI画像を用いた統合失調症診断のための軽量3次元畳み込みニューラルネットワーク(CNN)フレームワークを提案する。
精度は92.22%、感度94.44%、特異度90%、精度90.43%、リコール94.44%、F1スコア92.39%、G平均92.19%である。
論文 参考訳(メタデータ) (2022-11-05T10:27:37Z) - Med-DANet: Dynamic Architecture Network for Efficient Medical Volumetric
Segmentation [13.158995287578316]
我々は,Med-DANetという動的アーキテクチャネットワークを提案し,効率的な精度と効率のトレードオフを実現する。
入力された3次元MRIボリュームのスライス毎に,提案手法は決定ネットワークによってスライス固有の決定を学習する。
提案手法は, 従来の3次元MRI脳腫瘍セグメント化法と比較して, 同等あるいは良好な結果が得られる。
論文 参考訳(メタデータ) (2022-06-14T03:25:58Z) - A Unified Framework for Generalized Low-Shot Medical Image Segmentation
with Scarce Data [24.12765716392381]
距離距離距離距離学習(DML)に基づく医用画像分割の一般化のための統一的枠組みを提案する。
DMLでは,各カテゴリの多モード混合表現を学習し,画素の深層埋め込みとカテゴリ表現との間の余弦距離に基づいて密接な予測を行う。
脳MRIおよび腹部CTデータセットの実験において,提案手法は標準DNN(3D U-Net)法と古典的登録(ANT)法に対して,低ショットセグメンテーションにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-18T13:01:06Z) - Multi-Scale Convolutional Neural Network for Automated AMD
Classification using Retinal OCT Images [1.299941371793082]
加齢関連黄斑変性症(AMD)は、先進国、特に60歳以上の人々において、視覚障害の最も一般的な原因である。
近年のディープラーニングの発展は、完全に自動化された診断フレームワークの開発にユニークな機会を与えている。
様々な大きさの受容場を用いて病理を識別できる多スケール畳み込みニューラルネットワーク(CNN)を提案する。
論文 参考訳(メタデータ) (2021-10-06T18:20:58Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
マルチタスク型マルチスライス深層学習システム(M3Lung-Sys)を提案する。
COVID-19とHealthy, H1N1, CAPとの鑑別に加えて, M3 Lung-Sysも関連病変の部位を特定できる。
論文 参考訳(メタデータ) (2020-10-07T06:22:24Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
本研究では,2次元スライスVAEとガウスモデルを組み合わせた3次元MR脳の体積分布をモデル化する手法を提案する。
また,本研究では,脳解剖学に適合するセグメンテーションの精度を定量的に評価する新たなボリューム評価手法を提案する。
論文 参考訳(メタデータ) (2020-07-09T13:23:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。