論文の概要: Pathology Report Generation and Multimodal Representation Learning for Cutaneous Melanocytic Lesions
- arxiv url: http://arxiv.org/abs/2502.19293v2
- Date: Thu, 27 Feb 2025 09:09:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 11:31:35.007818
- Title: Pathology Report Generation and Multimodal Representation Learning for Cutaneous Melanocytic Lesions
- Title(参考訳): 皮膚メラノサイトーシス病変の病態報告とマルチモーダル表現学習
- Authors: Ruben T. Lucassen, Sander P. J. Moonemans, Tijn van de Luijtgaarden, Gerben E. Breimer, Willeke A. M. Blokx, Mitko Veta,
- Abstract要約: 皮膚黒色腫性病変の病理領域に特有な視覚言語モデルを構築した。
以上の結果から, モデル作成報告の品質スコアは, 病理学報告と同等であった。
- 参考スコア(独自算出の注目度): 0.7966328552094392
- License:
- Abstract: Millions of melanocytic skin lesions are examined by pathologists each year, the majority of which concern common nevi (i.e., ordinary moles). While most of these lesions can be diagnosed in seconds, writing the corresponding pathology report is much more time-consuming. Automating part of the report writing could, therefore, alleviate the increasing workload of pathologists. In this work, we develop a vision-language model specifically for the pathology domain of cutaneous melanocytic lesions. The model follows the Contrastive Captioner framework and was trained and evaluated using a melanocytic lesion dataset of 42,512 H&E-stained whole slide images and 19,645 corresponding pathology reports. Our results show that the quality scores of model-generated reports were on par with pathologist-written reports for common nevi, assessed by an expert pathologist in a reader study. While report generation revealed to be more difficult for rare melanocytic lesion subtypes, the cross-modal retrieval performance for these cases was considerably better.
- Abstract(参考訳): 毎年数百万のメラノサイト性皮膚病変が病理学者によって検査され、その大半は一般的なネビ(通常モグラ)に関するものである。
これらの病変のほとんどは数秒で診断できるが、それに対応する病理報告を書くのは非常に時間がかかる。
レポート作成の一部を自動化することで、病理学者の作業量の増加を軽減することができる。
本研究では,皮膚黒色腫性病変の病理領域に特有な視覚言語モデルを構築した。
このモデルはContrastive Captionerフレームワークに従い,42,512H&Eのスライディング画像と19,645の関連病理報告からなるメラノサイト病変データセットを用いて,訓練および評価を行った。
以上の結果から, モデル作成報告の品質スコアは, 臨床検診において, 臨床検診結果と同等であったことが示唆された。
稀な黒色腫性病変の亜型では報告生成が困難であることが判明したが,これらの症例のクロスモーダル検索成績は有意に良好であった。
関連論文リスト
- A Knowledge-enhanced Pathology Vision-language Foundation Model for Cancer Diagnosis [58.85247337449624]
本稿では,疾患知識を階層型セマンティックグループ内のアライメントに組み込む知識強化型視覚言語事前学習手法を提案する。
KEEPはゼロショット癌診断タスクにおいて最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-12-17T17:45:21Z) - Evaluating Machine Learning-based Skin Cancer Diagnosis [0.0]
この研究は、MobileNetベースのモデルとカスタムCNNモデルの2つの畳み込みニューラルネットワークアーキテクチャを評価する。
どちらのモデルも、皮膚病変を7つのカテゴリに分類し、危険病変と良性病変を区別する能力について評価されている。
この研究は、モデルが説明可能性を示す一方で、異なる肌のトーンの公平性を確保するためにさらなる開発が必要であると結論付けている。
論文 参考訳(メタデータ) (2024-09-04T02:44:48Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
特にGemini-Vision-Series (Gemini) と GPT-4-Series (GPT-4) は、コンピュータビジョンのための人工知能のパラダイムシフトを象徴している。
本研究は,14の医用画像データセットを対象に,Gemini,GPT-4,および4つの一般的な大規模モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-07-08T09:08:42Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - Expert Uncertainty and Severity Aware Chest X-Ray Classification by
Multi-Relationship Graph Learning [48.29204631769816]
我々はCXRレポートから病気ラベルを再抽出し,重症度と分類の不確実性を考慮し,より現実的になるようにした。
以上の結果から, 疾患の重症度と不確実性を考慮したモデルが, 従来の最先端手法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2023-09-06T19:19:41Z) - Pan-Cancer Integrative Histology-Genomic Analysis via Interpretable
Multimodal Deep Learning [4.764927152701701]
14種類のがん患者5,720人のスライド画像,RNA配列,コピー数の変化,および突然変異データを統合する。
我々の解釈可能な、弱教師付き、マルチモーダルなディープラーニングアルゴリズムは、これらの不均一なモダリティを融合して結果を予測することができる。
本研究は,全ての癌型にまたがる予後予測に寄与する形態学的および分子マーカーを解析する。
論文 参考訳(メタデータ) (2021-08-04T20:40:05Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
本研究では,長尾データを知識に基づいて複数のクラスサブセットに分割し,クラスサブセット学習を提案する。
モデルがサブセット固有の知識の学習に集中するように強制する。
提案手法は長期網膜疾患認識タスクに有効であることが判明した。
論文 参考訳(メタデータ) (2021-04-22T13:39:33Z) - An Attention-based Weakly Supervised framework for Spitzoid Melanocytic
Lesion Diagnosis in WSI [1.0948946179065253]
メラノーマは皮膚がんによる死の大半の原因となる攻撃的な腫瘍である。
診断と予後のための金の基準は、皮膚生検の分析である。
改良型畳み込みニューラルネットワーク(CNN)を用いた誘導伝達学習に基づく,エンドツーエンドの弱い教師付き深層学習モデルを提案する。
本フレームワークは、腫瘍パッチレベルパターンの発見を担当するソースモデルと、生検の特定診断に焦点を当てたターゲットモデルとから構成される。
論文 参考訳(メタデータ) (2021-04-20T10:18:57Z) - Melanoma Diagnosis with Spatio-Temporal Feature Learning on Sequential
Dermoscopic Images [40.743870665742975]
悪性黒色腫自動診断のための既存の皮膚科医は、病変の単一点像に基づいている。
そこで本研究では,連続した皮膚内視鏡像を用いたメラノーマ診断のための自動フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-19T04:08:22Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。