論文の概要: Risk-aware Integrated Task and Motion Planning for Versatile Snake Robots under Localization Failures
- arxiv url: http://arxiv.org/abs/2502.19690v1
- Date: Thu, 27 Feb 2025 02:02:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:56:03.313939
- Title: Risk-aware Integrated Task and Motion Planning for Versatile Snake Robots under Localization Failures
- Title(参考訳): ローカライゼーション障害下におけるバーサタイルスネークロボットのリスク対応型統合タスクと動作計画
- Authors: Ashkan Jasour, Guglielmo Daddi, Masafumi Endo, Tiago S. Vaquero, Michael Paton, Marlin P. Strub, Sabrina Corpino, Michel Ingham, Masahiro Ono, Rohan Thakker,
- Abstract要約: スネークロボットは、地球と宇宙の応用において、極端な地形や制限された環境を通して移動を可能にする。
この問題に対処するために、間欠的にスケジューリングされたスコープ(BLISS)を用いたブラインドモーションを提案する。
BLISSは、プロピロセプションのみのモビリティと間欠的なスキャンを組み合わせることで、ローカライゼーション障害と衝突リスクの両方に対して耐性がある。
- 参考スコア(独自算出の注目度): 6.250953826294371
- License:
- Abstract: Snake robots enable mobility through extreme terrains and confined environments in terrestrial and space applications. However, robust perception and localization for snake robots remain an open challenge due to the proximity of the sensor payload to the ground coupled with a limited field of view. To address this issue, we propose Blind-motion with Intermittently Scheduled Scans (BLISS) which combines proprioception-only mobility with intermittent scans to be resilient against both localization failures and collision risks. BLISS is formulated as an integrated Task and Motion Planning (TAMP) problem that leads to a Chance-Constrained Hybrid Partially Observable Markov Decision Process (CC-HPOMDP), known to be computationally intractable due to the curse of history. Our novelty lies in reformulating CC-HPOMDP as a tractable, convex Mixed Integer Linear Program. This allows us to solve BLISS-TAMP significantly faster and jointly derive optimal task-motion plans. Simulations and hardware experiments on the EELS snake robot show our method achieves over an order of magnitude computational improvement compared to state-of-the-art POMDP planners and $>$ 50\% better navigation time optimality versus classical two-stage planners.
- Abstract(参考訳): スネークロボットは、地球と宇宙の応用において、極端な地形や制限された環境を通して移動を可能にする。
しかし,スネークロボットのロバストな認識とローカライゼーションは,センサペイロードが地上に近接しているため,視野が狭いため,未解決の課題である。
この問題に対処するために,プロピロセプションのみのモビリティと間欠スキャンを組み合わせたBLISS(Intermittently Scheduled Scans)を用いたブラインドモーションを提案する。
BLISSは、Chance-Constrained Hybrid partial Observable Markov Decision Process (CC-HPOMDP) につながるタスク・アンド・モーション・プランニング(TAMP)問題として定式化されている。
我々の新奇性は、CC-HPOMDPをトラクタブルで凸凸混合整数線形プログラムとして再構成することにある。
これにより、BLISS-TAMP をはるかに高速に解き、協調して最適なタスク・モーション・プランを導出できる。
EELSスネークロボットのシミュレーションとハードウェア実験により、最先端のPOMDPプランナに比べて計算精度が桁違いに向上し、従来の2段階プランナに比べて50倍以上のナビゲーション時間最適性が得られた。
関連論文リスト
- Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models [57.45019514036948]
MRMP拡散(SMD)は、制約付き最適化を拡散サンプリングプロセスに統合し、運動学的に実現可能な軌道を生成する新しい手法である。
本稿では, ロボット密度, 障害物の複雑度, 動作制約の異なるシナリオ間の軌道計画アルゴリズムを評価するための総合的MRMPベンチマークを提案する。
論文 参考訳(メタデータ) (2025-02-05T20:51:28Z) - Generalizability of Graph Neural Networks for Decentralized Unlabeled Motion Planning [72.86540018081531]
ラベルなしの動作計画では、衝突回避を確保しながら、ロボットのセットを目標の場所に割り当てる。
この問題は、探査、監視、輸送などの応用において、マルチロボットシステムにとって不可欠なビルディングブロックを形成している。
この問題に対処するために、各ロボットは、その400ドルのアネレストロボットと$k$アネレストターゲットの位置のみを知っている分散環境で対処する。
論文 参考訳(メタデータ) (2024-09-29T23:57:25Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
タスク・アンド・モーション・プランニング(タスク・アンド・モーション・プランニング、TAMP)は、自動化された計画問題の解決策を見つけるための問題である。
本稿では,TAMP問題のモデル化とベンチマークを行うための,汎用的でオープンソースのフレームワークを提案する。
移動エージェントと複数のタスク状態依存障害を含むTAMP問題を解決する革新的なメタ技術を導入する。
論文 参考訳(メタデータ) (2024-08-11T14:57:57Z) - Neural Potential Field for Obstacle-Aware Local Motion Planning [46.42871544295734]
本稿では,ロボットのポーズ,障害物マップ,ロボットのフットプリントに基づいて,異なる衝突コストを返却するニューラルネットワークモデルを提案する。
私たちのアーキテクチャには、障害物マップとロボットフットプリントを埋め込みに変換するニューラルイメージエンコーダが含まれています。
Husky UGVモバイルロボットの実験は、我々のアプローチがリアルタイムで安全なローカルプランニングを可能にすることを示した。
論文 参考訳(メタデータ) (2023-10-25T05:00:21Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
移動, 把握, 接触問題を同時に解くための効率的な運動計画フレームワークを提案する。
ハードウェア実験において提案手法を実証し, より短い計画時間で, 傾斜角45degで自由クライミングを含む様々な動作を実現できることを示す。
論文 参考訳(メタデータ) (2022-07-04T13:52:10Z) - Distributing Collaborative Multi-Robot Planning with Gaussian Belief
Propagation [13.65857209749568]
本稿では、動的制約と衝突制約を定義する汎用因子グラフに基づく、新しい純粋分散手法を実証する。
本手法は, 道路交通シミュレーションシナリオにおいて, 極めて高性能な協調計画を可能にすることを示す。
論文 参考訳(メタデータ) (2022-03-22T11:13:36Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。