論文の概要: Inexact Moreau Envelope Lagrangian Method for Non-Convex Constrained Optimization under Local Error Bound Conditions on Constraint Functions
- arxiv url: http://arxiv.org/abs/2502.19764v1
- Date: Thu, 27 Feb 2025 05:04:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:55:58.118636
- Title: Inexact Moreau Envelope Lagrangian Method for Non-Convex Constrained Optimization under Local Error Bound Conditions on Constraint Functions
- Title(参考訳): 局所誤差境界条件下での非凸制約最適化のための不コンパクトモレオーエンベロープラグランジアン法
- Authors: Yankun Huang, Qihang Lin, Yangyang Xu,
- Abstract要約: 最適化問題の解法として不正確なエンベロープグランジアン(iMELa)法を提案する。
iMELa法は、$tilde(-2)$ gradient complexity で $epsilon$-Karush-Kuhn-ilon 点を求めることができる。
- 参考スコア(独自算出の注目度): 20.767753336718606
- License:
- Abstract: In this paper, we study the inexact Moreau envelope Lagrangian (iMELa) method for solving smooth non-convex optimization problems over a simple polytope with additional convex inequality constraints. By incorporating a proximal term into the traditional Lagrangian function, the iMELa method approximately solves a convex optimization subproblem over the polyhedral set at each main iteration. Under the assumption of a local error bound condition for subsets of the feasible set defined by subsets of the constraints, we establish that the iMELa method can find an $\epsilon$-Karush-Kuhn-Tucker point with $\tilde O(\epsilon^{-2})$ gradient oracle complexity.
- Abstract(参考訳): 本論文では, 凸不等式制約を付加した単純ポリトープ上での滑らかな非凸最適化問題の解法として, モローエンベロープラグランジアン法(iMELa)について検討する。
近似項を従来のラグランジアン関数に組み込むことで、iMELa法は各主反復における多面体集合上の凸最適化サブプロブレムを近似的に解く。
制約の部分集合で定義される実現可能集合の部分集合に対する局所誤差境界条件の仮定の下で、iMELa法は、$\tilde O(\epsilon^{-2})$ient Oracle complexity を持つ $\epsilon$-Karush-Kuhn-Tucker point を見つけることができる。
関連論文リスト
- Moreau Envelope ADMM for Decentralized Weakly Convex Optimization [55.2289666758254]
本稿では,分散最適化のための乗算器の交互方向法(ADMM)の近位変種を提案する。
数値実験の結果,本手法は広く用いられている手法よりも高速かつ堅牢であることが示された。
論文 参考訳(メタデータ) (2023-08-31T14:16:30Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
等式制約付き非線形非IBS最適化問題に対する適応的不正確なニュートン法を開発した。
ベンチマーク非線形問題,LVMのデータによる制約付きロジスティック回帰,PDE制約問題において,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-28T06:33:37Z) - Min-Max Optimization Made Simple: Approximating the Proximal Point
Method via Contraction Maps [77.8999425439444]
本稿では,凸/凹凸 min-max 問題に対して,ほぼ最適収束率を許容する一階法を提案する。
我々の研究は、近点法の更新規則を精度良く近似できるという事実に基づいている。
論文 参考訳(メタデータ) (2023-01-10T12:18:47Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
多くの実世界の問題は複雑な非機能的制約を持ち、多くのデータポイントを使用する。
提案手法は,従来最もよく知られた結果で既存手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-12-19T14:48:54Z) - Faster Projection-Free Augmented Lagrangian Methods via Weak Proximal
Oracle [16.290192687098383]
本稿では,アフィン制約を伴う凸複合最適化問題について考察する。
正確なプロジェクション/近距離計算が難解な高次元アプリケーションにより,テキスト投影のないラグランジアン型拡張手法を提案する。
論文 参考訳(メタデータ) (2022-10-25T12:51:43Z) - A conditional gradient homotopy method with applications to Semidefinite Programming [1.3332839594069592]
ホモトピーに基づく条件勾配法による凸最適化問題の解法。
我々の理論的複雑さは、最先端のSDPに直面すると競合し、安価なプロジェクションフリーの決定的な利点がある。
論文 参考訳(メタデータ) (2022-07-07T05:48:27Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
制約付き意思決定プロセス (CMDP) の問題点について検討し, エージェントは, 複数の制約を条件として, 期待される累積割引報酬を最大化することを目的とする。
新しいユーティリティ・デュアル凸法は、正規化ポリシー、双対正則化、ネステロフの勾配降下双対という3つの要素の新たな統合によって提案される。
これは、凸制約を受ける全ての複雑性最適化に対して、非凸CMDP問題が$mathcal O (1/epsilon)$の低い境界に達する最初の実演である。
論文 参考訳(メタデータ) (2021-10-20T02:57:21Z) - A Stochastic Composite Augmented Lagrangian Method For Reinforcement
Learning [9.204659134755795]
深層強化学習のための線形プログラミング(LP)の定式化について検討する。
拡張ラグランジアン法は、LPの解法において二重サンプリング障害に悩まされる。
深層パラメタライズされたラグランジアン法を提案する。
論文 参考訳(メタデータ) (2021-05-20T13:08:06Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - Halpern Iteration for Near-Optimal and Parameter-Free Monotone Inclusion
and Strong Solutions to Variational Inequalities [14.848525762485872]
非拡張写像、単調リプシッツ作用素、近位写像の間の接続を利用して、単調包含問題に対する準最適解を得る。
これらの結果は、変分不等式問題に対する強い解の近似、凸凸凹 min-max 最適化問題の近似、および min-max 最適化問題における勾配のノルムの最小化について、ほぼ最適に保証される。
論文 参考訳(メタデータ) (2020-02-20T17:12:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。