Inexact Moreau Envelope Lagrangian Method for Non-Convex Constrained Optimization under Local Error Bound Conditions on Constraint Functions
- URL: http://arxiv.org/abs/2502.19764v1
- Date: Thu, 27 Feb 2025 05:04:27 GMT
- Title: Inexact Moreau Envelope Lagrangian Method for Non-Convex Constrained Optimization under Local Error Bound Conditions on Constraint Functions
- Authors: Yankun Huang, Qihang Lin, Yangyang Xu,
- Abstract summary: We present the inexact envelopegrangian (iMELa) method for solving optimization problems.<n>We establish that the iMELa method can find an $epsilon$-Karush-Kuhn-ilon point with $tilde(-2)$ gradient complexity.
- Score: 20.767753336718606
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we study the inexact Moreau envelope Lagrangian (iMELa) method for solving smooth non-convex optimization problems over a simple polytope with additional convex inequality constraints. By incorporating a proximal term into the traditional Lagrangian function, the iMELa method approximately solves a convex optimization subproblem over the polyhedral set at each main iteration. Under the assumption of a local error bound condition for subsets of the feasible set defined by subsets of the constraints, we establish that the iMELa method can find an $\epsilon$-Karush-Kuhn-Tucker point with $\tilde O(\epsilon^{-2})$ gradient oracle complexity.
Related papers
- Moreau Envelope ADMM for Decentralized Weakly Convex Optimization [55.2289666758254]
This paper proposes a proximal variant of the alternating direction method of multipliers (ADMM) for distributed optimization.
The results of our numerical experiments indicate that our method is faster and more robust than widely-used approaches.
arXiv Detail & Related papers (2023-08-31T14:16:30Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - Min-Max Optimization Made Simple: Approximating the Proximal Point
Method via Contraction Maps [77.8999425439444]
We present a first-order method that admits near-optimal convergence rates for convex/concave min-max problems.
Our work is based on the fact that the update rule of the Proximal Point method can be approximated up to accuracy.
arXiv Detail & Related papers (2023-01-10T12:18:47Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
Many real-world problems have complicated non functional constraints and use a large number of data points.
Our proposed method outperforms an existing method with the previously best-known result.
arXiv Detail & Related papers (2022-12-19T14:48:54Z) - Faster Projection-Free Augmented Lagrangian Methods via Weak Proximal
Oracle [16.290192687098383]
This paper considers a convex composite optimization problem with affine constraints.
Motivated by high-dimensional applications in which exact projection/proximal computations are not tractable, we propose a textitprojection-free augmented Lagrangian-based method.
arXiv Detail & Related papers (2022-10-25T12:51:43Z) - Convex mixed-integer optimization with Frank-Wolfe methods [20.37026309402396]
Mixed-integer nonlinear optimization presents both theoretical and computational challenges.
We propose a new type of method to solve these problems based on a branch-and-bound algorithm with convex node relaxations.
arXiv Detail & Related papers (2022-08-23T14:46:54Z) - A conditional gradient homotopy method with applications to Semidefinite Programming [1.3332839594069592]
homotopy-based conditional gradient method for solving convex optimization problems with a large number of simple conic constraints.<n>Our theoretical complexity is competitive when confronted to state-of-the-art SDP, with the decisive advantage of cheap projection-frees.
arXiv Detail & Related papers (2022-07-07T05:48:27Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - A Stochastic Composite Augmented Lagrangian Method For Reinforcement
Learning [9.204659134755795]
We consider the linear programming (LP) formulation for deep reinforcement learning.
The augmented Lagrangian method suffers the double-sampling obstacle in solving the LP.
A deep parameterized augment Lagrangian method is proposed.
arXiv Detail & Related papers (2021-05-20T13:08:06Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - Halpern Iteration for Near-Optimal and Parameter-Free Monotone Inclusion
and Strong Solutions to Variational Inequalities [14.848525762485872]
We leverage the connections between nonexpansive maps, monotone Lipschitz operators, and proximal mappings to obtain near-optimal solutions to monotone inclusion problems.
These results translate into near-optimal guarantees for approximating strong solutions to variational inequality problems, approximating convex-concave min-max optimization problems, and minimizing the norm of the gradient in min-max optimization problems.
arXiv Detail & Related papers (2020-02-20T17:12:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.