論文の概要: QPM: Discrete Optimization for Globally Interpretable Image Classification
- arxiv url: http://arxiv.org/abs/2502.20130v1
- Date: Thu, 27 Feb 2025 14:25:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:59:32.535904
- Title: QPM: Discrete Optimization for Globally Interpretable Image Classification
- Title(参考訳): QPM:グローバル解釈可能な画像分類のための離散最適化
- Authors: Thomas Norrenbrock, Timo Kaiser, Sovan Biswas, Ramesh Manuvinakurike, Bodo Rosenhahn,
- Abstract要約: 本稿では,グローバルに解釈可能なクラス表現を学習する準プログラミング拡張モデル(QPM)を紹介する。
QPMは、他のクラスにも割り当てられる5つの機能のうち、非常に少ないバイナリの割り当てを持つすべてのクラスを表す。
結果として得られる最適割り当ては、様々な特徴を微調整するために使用され、それぞれが共有一般概念となる。
- 参考スコア(独自算出の注目度): 17.460420995034216
- License:
- Abstract: Understanding the classifications of deep neural networks, e.g. used in safety-critical situations, is becoming increasingly important. While recent models can locally explain a single decision, to provide a faithful global explanation about an accurate model's general behavior is a more challenging open task. Towards that goal, we introduce the Quadratic Programming Enhanced Model (QPM), which learns globally interpretable class representations. QPM represents every class with a binary assignment of very few, typically 5, features, that are also assigned to other classes, ensuring easily comparable contrastive class representations. This compact binary assignment is found using discrete optimization based on predefined similarity measures and interpretability constraints. The resulting optimal assignment is used to fine-tune the diverse features, so that each of them becomes the shared general concept between the assigned classes. Extensive evaluations show that QPM delivers unprecedented global interpretability across small and large-scale datasets while setting the state of the art for the accuracy of interpretable models.
- Abstract(参考訳): ディープニューラルネットワークの分類、例えば安全クリティカルな状況で使用されるような分類を理解することは、ますます重要になっている。
最近のモデルは1つの決定を局所的に説明できるが、正確なモデルの一般的な振る舞いに関する忠実なグローバルな説明を提供することは、より困難なオープンタスクである。
この目標に向けて,グローバルに解釈可能なクラス表現を学習する準プログラミング拡張モデル(QPM)を導入する。
QPMは、非常に少数(典型的には5)のバイナリ代入を持つすべてのクラスを表す。
このコンパクトな二項代入は、事前定義された類似度尺度と解釈可能性制約に基づいて離散最適化を用いて得られる。
結果として得られる最適割り当ては、様々な特徴を微調整するために使用され、それぞれが割り当てられたクラス間の共有一般概念となる。
大規模な評価では、QPMは、小規模および大規模データセット間で前例のないグローバルな解釈可能性を提供しながら、解釈可能なモデルの精度を最先端に設定している。
関連論文リスト
- Boosting of Classification Models with Human-in-the-Loop Computational Visual Knowledge Discovery [2.9465623430708905]
本稿では, クラス重複領域のすべてのケースに対して, 誤分類事例のみに焦点をあてることから, クラス重複領域への移動促進手法を提案する。
分割と分類のプロセスは、ケースを単純で複雑なものに分割し、計算分析とデータの視覚化を通じて個別に分類する。
純粋なクラス領域と重複クラス領域を見つけた後、純粋な領域における単純なケースを分類し、命題論理や一階論理などの決定規則のような解釈可能なサブモデルを生成する。
論文 参考訳(メタデータ) (2025-02-10T21:09:19Z) - Embracing Diversity: Interpretable Zero-shot classification beyond one vector per class [16.101460010750458]
クラス内の多様性を表現するために、ゼロショット分類は単一のベクトルを超えるべきであると論じる。
そこで本研究では,ゼロショット設定において,推論属性を用いたクラス内の多様性のエンコードと説明を行う手法を提案する。
提案手法は,大規模なデータセット群に対して,標準ゼロショット分類よりも一貫して優れることがわかった。
論文 参考訳(メタデータ) (2024-04-25T16:29:06Z) - Self-Supervised Learning via Maximum Entropy Coding [57.56570417545023]
本稿では,表現の構造を明示的に最適化する原理的目的として,最大エントロピー符号化(MEC)を提案する。
MECは、特定のプリテキストタスクに基づいて、以前のメソッドよりもより一般化可能な表現を学ぶ。
ImageNetリニアプローブだけでなく、半教師付き分類、オブジェクト検出、インスタンスセグメンテーション、オブジェクトトラッキングなど、さまざまなダウンストリームタスクに対して一貫して最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-10-20T17:58:30Z) - Not All Instances Contribute Equally: Instance-adaptive Class
Representation Learning for Few-Shot Visual Recognition [94.04041301504567]
少数ショットの視覚認識は、いくつかのラベル付きインスタンスから新しい視覚概念を認識することを指す。
本稿では,数ショットの視覚認識を実現するために,インスタンス適応型クラス表現学習ネットワーク(ICRL-Net)と呼ばれる新しいメトリックベースのメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-07T10:00:18Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - Generating Sparse Counterfactual Explanations For Multivariate Time
Series [0.5161531917413706]
多変量時系列に対するSPARse Counterfactual Explanationsを生成するGANアーキテクチャを提案する。
提案手法は, トラジェクトリの類似性, 疎性, 滑らか性の観点から, 対実損失関数を正規化する。
我々は,実世界の人間の動作データセットと合成時系列解釈可能性ベンチマークに対するアプローチを評価した。
論文 参考訳(メタデータ) (2022-06-02T08:47:06Z) - Learning What Not to Segment: A New Perspective on Few-Shot Segmentation [63.910211095033596]
近年では、FSS ( few-shot segmentation) が広く開発されている。
本稿では,問題を緩和するための新鮮で直接的な知見を提案する。
提案されたアプローチのユニークな性質を踏まえて、より現実的で挑戦的な設定にまで拡張する。
論文 参考訳(メタデータ) (2022-03-15T03:08:27Z) - Learning Optimal Fair Classification Trees: Trade-offs Between
Interpretability, Fairness, and Accuracy [7.215903549622416]
最適分類木を学習するための混合整数最適化フレームワークを提案する。
我々は、一般的なデータセットの公平な分類のための最先端アプローチに対して、我々の手法をベンチマークする。
我々の手法は、ほぼ完全に一致した決定を一貫して見つけ出すが、他の手法は滅多にない。
論文 参考訳(メタデータ) (2022-01-24T19:47:10Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
セマンティックセグメンテーションのためのモデルに依存しない訓練手法を提案する。
各トレーニングイテレーションで特定のクラス情報をランダムに除去することにより、クラス間の機能依存を効果的に削減する。
提案手法で訓練したモデルは,複数のセマンティックセグメンテーションベンチマークにおいて強い結果を示す。
論文 参考訳(メタデータ) (2021-10-31T16:15:09Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
本稿では,CNNの長期分布からネットワーク学習を改善するための2つの効果的な修正を提案する。
まず,ネットワーク分類器の学習と予測を改善するために,CAMC (Class Activation Map) モジュールを提案する。
第2に,長期化問題における表現学習における正規化分類器の利用について検討する。
論文 参考訳(メタデータ) (2021-08-29T05:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。