論文の概要: Judge a Book by its Cover: Investigating Multi-Modal LLMs for Multi-Page Handwritten Document Transcription
- arxiv url: http://arxiv.org/abs/2502.20295v1
- Date: Thu, 27 Feb 2025 17:21:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:59:30.888263
- Title: Judge a Book by its Cover: Investigating Multi-Modal LLMs for Multi-Page Handwritten Document Transcription
- Title(参考訳): 本を表紙で判断する:多ページ手書き文書転写のためのマルチモーダルLCMの検討
- Authors: Benjamin Gutteridge, Matthew Thomas Jackson, Toni Kukurin, Xiaowen Dong,
- Abstract要約: マルチモーダル大言語モデル(MLLM)を用いて,ゼロショット設定で多ページ手書き文書の書き起こしを行う。
本稿では,文書全体のOCR出力を第1ページ画像とともに提供することにより,MLLMの書き起こしを向上する新しい手法「+first page」を提案する。
- 参考スコア(独自算出の注目度): 8.143448433315319
- License:
- Abstract: Handwritten text recognition (HTR) remains a challenging task, particularly for multi-page documents where pages share common formatting and contextual features. While modern optical character recognition (OCR) engines are proficient with printed text, their performance on handwriting is limited, often requiring costly labeled data for fine-tuning. In this paper, we explore the use of multi-modal large language models (MLLMs) for transcribing multi-page handwritten documents in a zero-shot setting. We investigate various configurations of commercial OCR engines and MLLMs, utilizing the latter both as end-to-end transcribers and as post-processors, with and without image components. We propose a novel method, '+first page', which enhances MLLM transcription by providing the OCR output of the entire document along with just the first page image. This approach leverages shared document features without incurring the high cost of processing all images. Experiments on a multi-page version of the IAM Handwriting Database demonstrate that '+first page' improves transcription accuracy, balances cost with performance, and even enhances results on out-of-sample text by extrapolating formatting and OCR error patterns from a single page.
- Abstract(参考訳): 手書き文字認識(HTR)は、特にページが共通のフォーマットやコンテキストの特徴を共有するマルチページ文書では、依然として難しい課題である。
現代の光学文字認識(OCR)エンジンは印刷されたテキストに精通しているが、手書き文字のパフォーマンスは限られており、しばしば微調整のために高価なラベル付きデータを必要とする。
本稿では,多ページ手書き文書をゼロショットで書き起こすためのマルチモーダル大言語モデル (MLLM) について検討する。
商用OCRエンジンとMLLMの様々な構成について検討し、後者をエンドツーエンドのトランスクリバーおよび後処理として利用し、画像成分を伴わずに構成する。
本稿では,文書全体のOCR出力を第1ページ画像とともに提供することにより,MLLMの書き起こしを向上する新しい手法「+first page」を提案する。
このアプローチでは、すべての画像を処理するのに高いコストを要さずに、共有ドキュメント機能を活用する。
IAM Handwriting Databaseのマルチページ版での実験では、"+first page"は書き起こし精度を改善し、コストとパフォーマンスのバランスを保ち、単一のページからフォーマットやOCRのエラーパターンを外挿することで、サンプル外のテキストの結果をさらに高めている。
関連論文リスト
- PDF-WuKong: A Large Multimodal Model for Efficient Long PDF Reading with End-to-End Sparse Sampling [63.93112754821312]
マルチモーダル文書理解は,大量のテキスト情報や視覚情報を処理し,理解するための課題である。
大規模言語モデル(LLM)の最近の進歩は、このタスクの性能を大幅に改善した。
長いPDF文書に対する多モーダル質問回答(QA)を強化するために設計された多モーダル大言語モデル(MLLM)であるPDF-WuKongを紹介する。
論文 参考訳(メタデータ) (2024-10-08T12:17:42Z) - Leopard: A Vision Language Model For Text-Rich Multi-Image Tasks [62.758680527838436]
Leopardは、複数のテキストリッチイメージを含む視覚言語タスクを扱うビジョン言語モデルである。
まず、テキストリッチでマルチイメージのシナリオに合わせて、約100万の高品質なマルチモーダル命令チューニングデータをキュレートした。
第2に,視覚列長の割り当てを動的に最適化する適応型高解像度マルチイメージ符号化モジュールを開発した。
論文 参考訳(メタデータ) (2024-10-02T16:55:01Z) - mPLUG-DocOwl2: High-resolution Compressing for OCR-free Multi-page Document Understanding [103.05835688963947]
本稿では,高解像度文書画像を324個のトークンに圧縮する高解像度DocCompressorモジュールを提案する。
DocOwl2は、マルチページ文書理解ベンチマークにまたがる最先端の新たなベンチマークを設定し、最初のトークンレイテンシを50%以上削減する。
同様のデータで訓練されたシングルイメージMLLMと比較して、DocOwl2はビジュアルトークンの20%未満で、同等のシングルページ理解性能を実現しています。
論文 参考訳(メタデータ) (2024-09-05T11:09:00Z) - Focus Anywhere for Fine-grained Multi-page Document Understanding [24.76897786595502]
本稿では,LVLMを単ページ/複数ページの文書に注目する上で,効果的パイプライン,ハイブリッドデータ,チューニング戦略であるFoxを提案する。
我々は、複数の視覚語彙を用いて、インターリーブされた文書ページの視覚的ハイブリッド知識を抽出する。
我々は、複数の視覚語彙と文書内図形理解の完全な反応を達成するために、複数の語彙間の視覚データを前景として描画する。
論文 参考訳(メタデータ) (2024-05-23T08:15:49Z) - Multi-Page Document Visual Question Answering using Self-Attention Scoring Mechanism [12.289101189321181]
Document Visual Question Answering (Document VQA)は、文書理解と自然言語処理のコミュニティから大きな関心を集めている。
最先端の単一ページのDocument VQAメソッドは、素晴らしいパフォーマンスを示しているが、マルチページのシナリオでは、これらのメソッドは苦労している。
マルチページ文書VQAタスクのための新しい手法と効率的なトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-04-29T18:07:47Z) - TextHawk: Exploring Efficient Fine-Grained Perception of Multimodal Large Language Models [9.232693392690702]
TextHawkは文書指向マルチモーダル言語モデル(MLLM)である。
4つの専用コンポーネントを設計することで、効率的な微粒化知覚を探索するように設計されている。
汎用MLLMベンチマークと文書指向MLLMベンチマークの両方で広範な実験を行い、TextHawkが最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-04-14T09:48:37Z) - Visually Guided Generative Text-Layout Pre-training for Document Intelligence [51.09853181377696]
視覚誘導型生成テキスト事前学習(ViTLP)を提案する。
文書画像が与えられた場合、モデルは階層言語とレイアウトモデリングの目的を最適化し、インターリーブされたテキストとレイアウトシーケンスを生成する。
ViTLPは、文書画像のテキストをローカライズし、認識するためのネイティブなOCRモデルとして機能する。
論文 参考訳(メタデータ) (2024-03-25T08:00:43Z) - GRAM: Global Reasoning for Multi-Page VQA [14.980413646626234]
本稿では,事前学習したシングルページモデルをマルチページ設定にシームレスに拡張するGRAMを提案する。
そのため、ローカルページレベルの理解にシングルページエンコーダを活用し、文書レベルの指定層と学習可能なトークンで拡張する。
復号化時に計算量を増やすため、任意の圧縮段階を導入する。
論文 参考訳(メタデータ) (2024-01-07T08:03:06Z) - UReader: Universal OCR-free Visually-situated Language Understanding
with Multimodal Large Language Model [108.85584502396182]
MLLM(Multimodal Large Language Model)に基づく汎用OCRのない視覚的言語理解の最初の探索であるUReaderを提案する。
MLLMの浅いテキスト認識能力を利用することで、パラメータを1.2%だけ微調整した。
言語理解タスク10のうち8つは、最先端のocrフリーな性能を実現している。
論文 参考訳(メタデータ) (2023-10-08T11:33:09Z) - mPLUG-DocOwl: Modularized Multimodal Large Language Model for Document
Understanding [55.4806974284156]
文書理解とは、ウェブページのようなデジタル文書から自動的に情報を抽出し、分析し、理解することである。
既存のMLLM(Multi-model Large Language Models)は、浅いOCRフリーテキスト認識において、望ましくないゼロショット機能を実証している。
論文 参考訳(メタデータ) (2023-07-04T11:28:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。