論文の概要: Bridging Legal Knowledge and AI: Retrieval-Augmented Generation with Vector Stores, Knowledge Graphs, and Hierarchical Non-negative Matrix Factorization
- arxiv url: http://arxiv.org/abs/2502.20364v1
- Date: Thu, 27 Feb 2025 18:35:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:59:09.822288
- Title: Bridging Legal Knowledge and AI: Retrieval-Augmented Generation with Vector Stores, Knowledge Graphs, and Hierarchical Non-negative Matrix Factorization
- Title(参考訳): 法的知識とAIのブリッジ: ベクトルストア、知識グラフ、階層的非負行列因子化による検索拡張生成
- Authors: Ryan C. Barron, Maksim E. Eren, Olga M. Serafimova, Cynthia Matuszek, Boian S. Alexandrov,
- Abstract要約: 大規模言語モデル(LLM)を利用したエージェント生成AI - 検索型生成(RAG)、知識グラフ(KG)、ベクトルストア(VS)
この技術は、膨大な非構造化または半構造化データセット内の関係を推測するのに優れている。
非負行列因子化(Non-Negative Matrix Factorization, NMF)により構築されたRAG, VS, KGを統合した生成AIシステムを導入する。
- 参考スコア(独自算出の注目度): 6.0045906216050815
- License:
- Abstract: Agentic Generative AI, powered by Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG), Knowledge Graphs (KGs), and Vector Stores (VSs), represents a transformative technology applicable to specialized domains such as legal systems, research, recommender systems, cybersecurity, and global security, including proliferation research. This technology excels at inferring relationships within vast unstructured or semi-structured datasets. The legal domain here comprises complex data characterized by extensive, interrelated, and semi-structured knowledge systems with complex relations. It comprises constitutions, statutes, regulations, and case law. Extracting insights and navigating the intricate networks of legal documents and their relations is crucial for effective legal research. Here, we introduce a generative AI system that integrates RAG, VS, and KG, constructed via Non-Negative Matrix Factorization (NMF), to enhance legal information retrieval and AI reasoning and minimize hallucinations. In the legal system, these technologies empower AI agents to identify and analyze complex connections among cases, statutes, and legal precedents, uncovering hidden relationships and predicting legal trends-challenging tasks that are essential for ensuring justice and improving operational efficiency. Our system employs web scraping techniques to systematically collect legal texts, such as statutes, constitutional provisions, and case law, from publicly accessible platforms like Justia. It bridges the gap between traditional keyword-based searches and contextual understanding by leveraging advanced semantic representations, hierarchical relationships, and latent topic discovery. This framework supports legal document clustering, summarization, and cross-referencing, for scalable, interpretable, and accurate retrieval for semi-structured data while advancing computational law and AI.
- Abstract(参考訳): エージェント生成AIは、検索型生成(RAG)、知識グラフ(KG)、ベクトルストア(VS)を備えたLarge Language Models(LLM)をベースとして、法体系、研究、レコメンダシステム、サイバーセキュリティ、増殖研究を含むグローバルセキュリティなどの専門分野に適用可能な変換技術である。
この技術は、膨大な非構造化または半構造化データセット内の関係を推測するのに優れている。
ここでの法的領域は、複雑な関係を持つ広範囲で相互に関連し、半構造化された知識システムによって特徴づけられる複雑なデータから構成される。
憲法、法律、規則、判例法で構成されている。
法的文書の複雑なネットワークとそれらの関係を抽出し、探索することは、効果的な法的研究にとって不可欠である。
本稿では,Non-Negative Matrix Factorization (NMF)を用いて構築されたRAG,VS,KGを統合した生成AIシステムを紹介し,法情報検索とAI推論を強化し,幻覚を最小化する。
法体系において、これらの技術はAIエージェントに、事件、法令、そして法的な前例の間の複雑な関係を特定し、分析し、隠れた関係を明らかにし、正義の確保と運用効率の向上に不可欠な法的傾向を予測させる。
本システムでは,ユスティニアなどの公的なプラットフォームから法令,憲法規定,判例法などの法的文書を体系的に収集するために,Webスクレイピング技術を用いている。
従来のキーワードベースの検索と文脈理解のギャップを埋め、高度な意味表現、階層的関係、潜在トピック発見を活用する。
このフレームワークは、計算法とAIを進歩させながら、半構造化データのスケーラブルで解釈可能な正確な検索を実現するために、法的文書クラスタリング、要約、相互参照をサポートする。
関連論文リスト
- GeAR: Generation Augmented Retrieval [82.20696567697016]
文書検索技術は大規模情報システム開発の基礎となる。
一般的な手法は、バイエンコーダを構築し、セマンティックな類似性を計算することである。
我々は、よく設計された融合およびデコードモジュールを組み込んだ $textbfGe$neration という新しい手法を提案する。
論文 参考訳(メタデータ) (2025-01-06T05:29:00Z) - A Comprehensive Framework for Reliable Legal AI: Combining Specialized Expert Systems and Adaptive Refinement [0.0]
本稿では,専門家システムと知識に基づくアーキテクチャを組み合わせた新しい枠組みを提案する。
このフレームワークは特殊なモジュールを利用し、それぞれが特定の法的領域に焦点を当て、構造化された運用ガイドラインを取り入れて意思決定を強化する。
提案されたアプローチは、既存のAIモデルよりも大幅に改善され、法的タスクのパフォーマンスが向上し、よりアクセシブルで手頃な価格の法律サービスを提供するスケーラブルなソリューションを提供する。
論文 参考訳(メタデータ) (2024-12-29T14:00:11Z) - Unlocking Legal Knowledge with Multi-Layered Embedding-Based Retrieval [0.0]
本稿では,法的および立法的テキストに対する多層埋め込みに基づく検索手法を提案する。
提案手法は,検索型拡張生成システムに正確な応答を提供することによって,様々な情報要求を満たす。
論文 参考訳(メタデータ) (2024-11-12T12:03:57Z) - Leveraging Knowledge Graphs and LLMs to Support and Monitor Legislative Systems [0.0]
本研究は、立法プロセスの相乗効果と支援について、立法知識グラフとLLMを用いて検討する。
この目的のために、我々は、立法分析を行う可能性を高めるイタリアの法律に焦点を当てたインタラクティブなプラットフォームであるLegis AI Platformを開発する。
論文 参考訳(メタデータ) (2024-09-20T06:21:03Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
コネクショニストと象徴的人工知能(AI)の収束を探求する記事
従来、コネクショナリストAIはニューラルネットワークにフォーカスし、シンボリックAIはシンボリック表現とロジックを強調していた。
大型言語モデル(LLM)の最近の進歩は、人間の言語をシンボルとして扱う際のコネクショナリストアーキテクチャの可能性を強調している。
論文 参考訳(メタデータ) (2024-07-11T14:00:53Z) - Report of the 1st Workshop on Generative AI and Law [78.62063815165968]
本報告では、生成AIと法に関する第1回ワークショップ(GenLaw)の開催状況について述べる。
コンピュータサイエンスと法学の実践者や学者の学際的なグループが集まり、ジェネレーティブAI法がもたらす技術的、教義的、政策上の課題について議論した。
論文 参考訳(メタデータ) (2023-11-11T04:13:37Z) - Constructing a Knowledge Graph for Vietnamese Legal Cases with
Heterogeneous Graphs [5.168558598888541]
本稿では,法律事例文書と関連する法律に関する知識グラフ構築手法を提案する。
当社のアプローチは,データクローリング,情報抽出,知識グラフ展開という3つの主要なステップで構成されています。
論文 参考訳(メタデータ) (2023-09-16T18:31:47Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
情報検索は、項ベースの手法から高度なニューラルモデルとの統合へと進化してきた。
近年の研究では、大規模言語モデル(LLM)を活用してIRシステムの改善が試みられている。
LLMとIRシステムの合流点を探索し、クエリリライト、リトリバー、リランカー、リーダーといった重要な側面を含む。
論文 参考訳(メタデータ) (2023-08-14T12:47:22Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z) - Finding the Law: Enhancing Statutory Article Retrieval via Graph Neural
Networks [3.5880535198436156]
本稿では,グラフニューラルネットワークを用いて法制構造を組み込んだグラフ拡張高密度法規検索(G-DSR)モデルを提案する。
実験の結果,本手法は,実世界のエキスパートアノテートされたSARデータセットにおいて,強力な検索ベースラインよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-01-30T12:59:09Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
再利用(Reuse)は、システムアーキテクチャを既存のコンポーネントでインスタンス化しようとする、一般的なシステムアーキテクチャのアプローチである。
現在、コンポーネントが当初目的としていたものと異なるシステムで運用する可搬性を評価するために必要な情報の選択をガイドするフレームワークは存在しない。
我々は、AI対応コンポーネントの主情報をキャプチャするインターフェイス記述テンプレートの確立に向けて、現在進行中の作業について述べる。
論文 参考訳(メタデータ) (2020-07-13T20:30:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。