EDENet: Echo Direction Encoding Network for Place Recognition Based on Ground Penetrating Radar
- URL: http://arxiv.org/abs/2502.20643v1
- Date: Fri, 28 Feb 2025 01:48:12 GMT
- Title: EDENet: Echo Direction Encoding Network for Place Recognition Based on Ground Penetrating Radar
- Authors: Pengyu Zhang, Xieyuanli Chen, Yuwei Chen, Beizhen Bi, Zhuo Xu, Tian Jin, Xiaotao Huang, Liang Shen,
- Abstract summary: Ground penetrating radar (GPR) based localization has gained significant recognition in robotics.<n>Existing methods are primarily focused on small-scale place recognition (PR), leaving the challenges of PR in large-scale maps unaddressed.<n>We introduce learnable Gabor filters for the precise extraction of directional responses, coupled with a direction-aware attention mechanism for effective geometric encoding.
- Score: 20.860547422960796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ground penetrating radar (GPR) based localization has gained significant recognition in robotics due to its ability to detect stable subsurface features, offering advantages in environments where traditional sensors like cameras and LiDAR may struggle. However, existing methods are primarily focused on small-scale place recognition (PR), leaving the challenges of PR in large-scale maps unaddressed. These challenges include the inherent sparsity of underground features and the variability in underground dielectric constants, which complicate robust localization. In this work, we investigate the geometric relationship between GPR echo sequences and underground scenes, leveraging the robustness of directional features to inform our network design. We introduce learnable Gabor filters for the precise extraction of directional responses, coupled with a direction-aware attention mechanism for effective geometric encoding. To further enhance performance, we incorporate a shift-invariant unit and a multi-scale aggregation strategy to better accommodate variations in di-electric constants. Experiments conducted on public datasets demonstrate that our proposed EDENet not only surpasses existing solutions in terms of PR performance but also offers advantages in model size and computational efficiency.
Related papers
- Redundant feature screening method for human activity recognition based on attention purification mechanism [4.432504070976628]
We propose a universal attention feature purification mechanism, called MSAP, which is suitable for multi-scale networks.
The mechanism effectively solves the feature redundancy caused by the superposition of multi-scale features.
In addition, we have designed a network correction module that integrates seamlessly between layers of individual network modules.
arXiv Detail & Related papers (2025-03-30T17:44:12Z) - Towards Scalable Foundation Model for Multi-modal and Hyperspectral Geospatial Data [14.104497777255137]
We introduce Low-rank Efficient Spatial-Spectral Vision Transformer with three key innovations.
We pretrain LESS ViT using a Hyperspectral Masked Autoencoder framework with integrated positional and channel masking strategies.
Experimental results demonstrate that our proposed method achieves competitive performance against state-of-the-art multi-modal geospatial foundation models.
arXiv Detail & Related papers (2025-03-17T05:42:19Z) - Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
We propose a transformer-based deep homography estimation (DHE) network.
It takes the dense feature map extracted by a backbone network as input and fits homography for fast and learnable geometric verification.
Experiments on benchmark datasets show that our method can outperform several state-of-the-art methods.
arXiv Detail & Related papers (2024-02-25T13:22:17Z) - Fast and Accurate Cooperative Radio Map Estimation Enabled by GAN [63.90647197249949]
In the 6G era, real-time radio resource monitoring and management are urged to support diverse wireless-empowered applications.
In this paper, we present a cooperative radio map estimation approach enabled by the generative adversarial network (GAN)
arXiv Detail & Related papers (2024-02-05T05:01:28Z) - Wavelet Dynamic Selection Network for Inertial Sensor Signal Enhancement [11.793803540713695]
Inertial sensors are widely used in various portable devices.
Wavelet dynamic selection network (WDSNet) intelligently selects appropriate wavelet basis for variable inertial signals.
WDSNet, as a weakly-supervised method, achieves the state-of-the-art performance of all the compared fully-supervised methods.
arXiv Detail & Related papers (2023-12-29T07:44:06Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - DETR Doesn't Need Multi-Scale or Locality Design [69.56292005230185]
This paper presents an improved DETR detector that maintains a "plain" nature.
It uses a single-scale feature map and global cross-attention calculations without specific locality constraints.
We show that two simple technologies are surprisingly effective within a plain design to compensate for the lack of multi-scale feature maps and locality constraints.
arXiv Detail & Related papers (2023-08-03T17:59:04Z) - MPANet: Multi-Patch Attention For Infrared Small Target object Detection [11.437699171778544]
Infrared small target detection (ISTD) has attracted widespread attention and been applied in various fields.
Due to the small size of infrared targets and the noise interference from complex backgrounds, the performance of ISTD using convolutional neural networks (CNNs) is restricted.
A multi-patch attention network (MPANet) based on the axial-attention encoder and the multi-scale patch branch (MSPB) structure is proposed.
arXiv Detail & Related papers (2022-06-05T08:01:38Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z) - Rethinking the Tradeoff in Integrated Sensing and Communication:
Recognition Accuracy versus Communication Rate [21.149708253108788]
Integrated sensing and communication (ISAC) is a promising technology to improve the band-utilization efficiency.
There exists a tradeoff between the sensing and communication performance.
This paper formulates and solves a multi-objective optimization problem which simultaneously maximizes the recognition accuracy and the communication data rate.
arXiv Detail & Related papers (2021-07-20T17:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.