論文の概要: Towards Resilient and Sustainable Global Industrial Systems: An Evolutionary-Based Approach
- arxiv url: http://arxiv.org/abs/2503.11688v1
- Date: Wed, 05 Mar 2025 22:10:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-23 06:38:27.174623
- Title: Towards Resilient and Sustainable Global Industrial Systems: An Evolutionary-Based Approach
- Title(参考訳): 弾力性と持続可能なグローバル産業システムに向けて:進化的アプローチ
- Authors: Václav Jirkovský, Jiří Kubalík, Petr Kadera, Arnd Schirrmann, Andreas Mitschke, Andreas Zindel,
- Abstract要約: 本稿では,産業システムの自動設計における新しい複雑な最適化問題を提案する。
これは、CO2排出量、輸送時間、コストを最小限に抑えるソリューションを見つけることを目的としている。
提案手法は、複雑な製造とサプライチェーンの課題を伴うあらゆる産業事例に適用できる。
- 参考スコア(独自算出の注目度): 0.14660435286994572
- License:
- Abstract: This paper presents a new complex optimization problem in the field of automatic design of advanced industrial systems and proposes a hybrid optimization approach to solve the problem. The problem is multi-objective as it aims at finding solutions that minimize CO2 emissions, transportation time, and costs. The optimization approach combines an evolutionary algorithm and classical mathematical programming to design resilient and sustainable global manufacturing networks. Further, it makes use of the OWL ontology for data consistency and constraint management. The experimental validation demonstrates the effectiveness of the approach in both single and double sourcing scenarios. The proposed methodology, in general, can be applied to any industry case with complex manufacturing and supply chain challenges.
- Abstract(参考訳): 本稿では,先進産業システムの自動設計における新しい複雑な最適化問題を提案し,その問題を解決するためのハイブリッド最適化手法を提案する。
問題は、CO2排出量、輸送時間、コストを最小限に抑えるソリューションを見つけることを目的としているため、多目的である。
最適化アプローチは、進化的アルゴリズムと古典的な数学的プログラミングを組み合わせて、レジリエントで持続可能なグローバル製造ネットワークを設計する。
さらに、データ一貫性と制約管理にOWLオントロジーを利用する。
実験的な検証は、シングルソーシングとダブルソーシングの両方のシナリオで、このアプローチの有効性を示す。
提案手法は、一般に、複雑な製造とサプライチェーンの課題を伴うあらゆる産業ケースに適用できる。
関連論文リスト
- A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
大規模Mixture of Experts(MoE)モデルは、条件計算によるモデル容量と計算効率の向上を提供する。
これらのモデル上で推論をデプロイし実行することは、計算資源、レイテンシ、エネルギー効率において大きな課題を示す。
本調査では,システムスタック全体にわたるMoEモデルの最適化手法について分析する。
論文 参考訳(メタデータ) (2024-12-18T14:11:15Z) - Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
大きな言語モデル(LLM)と進化的アルゴリズム(EA)は、制限を克服し、最適化をより自動化するための有望な新しいアプローチを提供する。
LLMは最適化戦略の生成、洗練、解釈が可能な動的エージェントとして機能する。
EAは進化作用素を通して、複雑な解空間を効率的に探索する。
論文 参考訳(メタデータ) (2024-10-28T09:04:49Z) - Bayesian optimization as a flexible and efficient design framework for
sustainable process systems [2.7059126618449527]
本稿では,次世代プロセスシステムの設計におけるBOの最近の展開,課題,機会について概説する。
いくつかのモチベーションアプリケーションについて説明した後、これらのアプリケーションにおいて重要な問題により効率的に対処するために、BO法がどのように開発されたかについて論じる。
論文 参考訳(メタデータ) (2024-01-29T18:12:32Z) - Sample-Efficient Multi-Agent RL: An Optimization Perspective [103.35353196535544]
一般関数近似に基づく汎用マルコフゲーム(MG)のためのマルチエージェント強化学習(MARL)について検討した。
汎用MGに対するマルチエージェントデカップリング係数(MADC)と呼ばれる新しい複雑性尺度を導入する。
我々のアルゴリズムは既存の研究に匹敵するサブリニアな後悔を与えることを示す。
論文 参考訳(メタデータ) (2023-10-10T01:39:04Z) - Bayesian Quality-Diversity approaches for constrained optimization
problems with mixed continuous, discrete and categorical variables [0.3626013617212667]
シミュレーション予算の制限という観点から,混合変数に基づく新しい品質多様性手法を提案する。
提案手法は、複雑なシステム設計のための意思決定者にとって貴重なトレードオフを提供する。
論文 参考訳(メタデータ) (2023-09-11T14:29:47Z) - A Logic Programming Approach to Global Logistics in a Co-Design
Environment [0.0]
本稿では,旅客機構築のためのグローバルロジスティクスシステムの構築と最適化の課題について考察する。
問題の製品は、世界中の複数の場所で製造される複数の部品からなる航空機である。
目標は、産業システムの要件を考慮して航空機を構築するための最適な方法を見つけることである。
論文 参考訳(メタデータ) (2023-08-30T09:06:34Z) - Resiliency Analysis of LLM generated models for Industrial Automation [0.7018015405843725]
本稿では,Large Language Models (LLMs) を用いた自動生成産業自動化・制御システムのレジリエンスと効率性について検討する。
本研究の目的は、産業自動化・制御における自動生成システムの有効性と信頼性に関する洞察を提供することと、その設計・実装改善の可能性を明らかにすることである。
論文 参考訳(メタデータ) (2023-08-23T13:35:36Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
我々は,従来の最適化タスクから解を転送するアルゴリズムの能力を研究することのできる,システムの柔軟性のためのフレームワークを提案する。
NSGA-IIの柔軟性を2つの変種で検討し,1)2つのタスクの解を同時に最適化し,より適応性が高いと期待されるソース間の解を得る,2)活性化あるいは非活性化の異なる可能性に対応する能動的非アクティブなジェノタイプについて検討した。
その結果,標準NSGA-IIによる適応は目標目標への最適化に必要な評価回数を大幅に削減し,提案した変種は適応コストをさらに向上することがわかった。
論文 参考訳(メタデータ) (2023-05-31T12:07:50Z) - Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles [55.23285485923913]
エネルギーシステムの最適化問題は、強い非線形系の挙動と複数の競合する目的のために複雑である。
場合によっては、提案された最適解は、物理的性質や安全クリティカルな操作条件に関連する明示的な入力制約に従う必要がある。
本稿では,ブラックボックス問題に対する制約付き多目的最適化のためのツリーアンサンブルを用いた新しいデータ駆動戦略を提案する。
論文 参考訳(メタデータ) (2021-11-04T20:18:55Z) - Reinforcement Learning for Flexibility Design Problems [77.37213643948108]
フレキシビリティ設計問題に対する強化学習フレームワークを開発した。
実験の結果、RL法は古典的手法よりも優れた解を常に見出すことがわかった。
論文 参考訳(メタデータ) (2021-01-02T02:44:39Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。