論文の概要: Information Bottleneck-Guided Heterogeneous Graph Learning for Interpretable Neurodevelopmental Disorder Diagnosis
- arxiv url: http://arxiv.org/abs/2502.20769v1
- Date: Fri, 28 Feb 2025 06:41:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:41:57.186545
- Title: Information Bottleneck-Guided Heterogeneous Graph Learning for Interpretable Neurodevelopmental Disorder Diagnosis
- Title(参考訳): 解釈型神経発達障害診断のためのインフォメーション・ボトルネック誘導不均質グラフ学習
- Authors: Yueyang Li, Lei Chen, Wenhao Dong, Shengyu Gong, Zijian Kang, Boyang Wei, Weiming Zeng, Hongjie Yan, Lingbin Bian, Wai Ting Siok, Nizhuan Wang,
- Abstract要約: Interpretable Information Bottleneck Heterogeneous Graph Neural Network (I2B-HGNN)は、局所的なきめ細かいパターンから包括的なグローバルなマルチモーダルインタラクションまでを学習するために設計された新しいフレームワークである。
I2B-HGNNは、NDDを高精度に診断し、解釈可能なバイオマーカーの同定と非イメージングデータの効果的な解析を提供する。
- 参考スコア(独自算出の注目度): 5.994080942001875
- License:
- Abstract: Developing interpretable models for diagnosing neurodevelopmental disorders (NDDs) is highly valuable yet challenging, primarily due to the complexity of encoding, decoding and integrating imaging and non-imaging data. Many existing machine learning models struggle to provide comprehensive interpretability, often failing to extract meaningful biomarkers from imaging data, such as functional magnetic resonance imaging (fMRI), or lacking mechanisms to explain the significance of non-imaging data. In this paper, we propose the Interpretable Information Bottleneck Heterogeneous Graph Neural Network (I2B-HGNN), a novel framework designed to learn from fine-grained local patterns to comprehensive global multi-modal interactions. This framework comprises two key modules. The first module, the Information Bottleneck Graph Transformer (IBGraphFormer) for local patterns, integrates global modeling with brain connectomic-constrained graph neural networks to identify biomarkers through information bottleneck-guided pooling. The second module, the Information Bottleneck Heterogeneous Graph Attention Network (IB-HGAN) for global multi-modal interactions, facilitates interpretable multi-modal fusion of imaging and non-imaging data using heterogeneous graph neural networks. The results of the experiments demonstrate that I2B-HGNN excels in diagnosing NDDs with high accuracy, providing interpretable biomarker identification and effective analysis of non-imaging data.
- Abstract(参考訳): 神経発達障害(NDD)を診断するための解釈可能なモデルの開発は、主にエンコーディング、復号化、画像と非画像データの統合の複雑さのため、非常に有用だが困難である。
既存の機械学習モデルは、機能的磁気共鳴イメージング(fMRI)や非画像データの重要性を説明するメカニズムの欠如など、画像データから意味のあるバイオマーカーを抽出することができないため、包括的な解釈可能性の提供に苦慮している。
本稿では,局所的なきめ細かいパターンから包括的グローバルなマルチモーダルインタラクションへ学習するための新しいフレームワークであるInterpretable Information Bottleneck Heterogeneous Graph Neural Network (I2B-HGNN)を提案する。
このフレームワークは2つの主要なモジュールから構成される。
最初のモジュールである、ローカルパターンのためのInformation Bottleneck Graph Transformer (IBGraphFormer)は、グローバルモデリングと脳コネクトロミックに制約されたグラフニューラルネットワークを統合し、情報のボトルネック誘導プールを通じてバイオマーカーを識別する。
第2のモジュールであるIB-HGAN(Information Bottleneck Heterogeneous Graph Attention Network)は、異種グラフニューラルネットワークを用いた画像と非画像データの解釈可能なマルチモーダル融合を促進する。
実験の結果、I2B-HGNNは高い精度でNDDの診断に優れており、解釈可能なバイオマーカーの同定と非イメージングデータの効果的な解析が可能であることが示された。
関連論文リスト
- Mew: Multiplexed Immunofluorescence Image Analysis through an Efficient Multiplex Network [84.88767228835928]
マルチプレックスネットワークのレンズを通してmIF画像を効率的に処理する新しいフレームワークであるMewを紹介する。
Mew は、幾何学情報のための Voronoi ネットワークと、セルワイドの均一性を捉えるセル型ネットワークという、2つの異なる層からなる多重ネットワークを革新的に構築する。
このフレームワークは、トレーニング中にグラフ全体を処理できるスケーラブルで効率的なグラフニューラルネットワーク(GNN)を備えている。
論文 参考訳(メタデータ) (2024-07-25T08:22:30Z) - MM-GTUNets: Unified Multi-Modal Graph Deep Learning for Brain Disorders Prediction [9.75237128240713]
脳障害予測のためのマルチモーダルグラフ深層学習フレームワークMM-GTUNetsを提案する。
本稿では,報酬システムを用いて集団グラフを適応的に構築するMRRL(Modality Reward Representation Learning)を提案する。
また,ACMGL(Adaptive Cross-Modal Graph Learning)を提案する。
論文 参考訳(メタデータ) (2024-06-20T16:14:43Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
オーバーセグメントニューロン間の接続を予測し,人間の作業量を削減することを目的としている。
最初はFlyTracingという名前のデータセットを構築しました。
本稿では,高密度なボリュームEM画像の埋め込みを生成するための,新しい接続性を考慮したコントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-05T19:45:12Z) - Multi-modal Graph Neural Network for Early Diagnosis of Alzheimer's
Disease from sMRI and PET Scans [11.420077093805382]
我々は,非ユークリッド領域の問題に対処するためのグラフニューラルネットワーク(GNN)を提案する。
本研究では,sMRIやPET画像から脳ネットワークを生成可能であることを示す。
次に、各モーダルが独自のGNNの分岐を持つマルチモーダルGNNフレームワークを提案し、その多モーダルデータを組み合わせる手法を提案する。
論文 参考訳(メタデータ) (2023-07-31T02:04:05Z) - Investigating the Predictive Reproducibility of Federated Graph Neural
Networks using Medical Datasets [0.0]
本稿では、医用画像と脳接続データセットの分類に応用したフェデレーションGNNモデルの適用について検討する。
我々は,これらの医学的学習課題において,連合学習がGNNモデルの精度と精度を高めることを示した。
論文 参考訳(メタデータ) (2022-09-13T14:32:03Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Characterization Multimodal Connectivity of Brain Network by Hypergraph
GAN for Alzheimer's Disease Analysis [30.99183477161096]
脳ネットワークを特徴付けるマルチモーダル・ニューロイメージングデータは、現在、アルツハイマー病(AD)解析の高度な技術である。
DTI と rs-fMRI の組合せから脳ネットワークのマルチモーダル接続を生成するための新しいハイパーグラフ生成支援ネットワーク (HGGAN) を提案する。
論文 参考訳(メタデータ) (2021-07-21T09:02:29Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。