VLEER: Vision and Language Embeddings for Explainable Whole Slide Image Representation
- URL: http://arxiv.org/abs/2502.20850v1
- Date: Fri, 28 Feb 2025 08:49:03 GMT
- Title: VLEER: Vision and Language Embeddings for Explainable Whole Slide Image Representation
- Authors: Anh Tien Nguyen, Keunho Byeon, Kyungeun Kim, Jin Tae Kwak,
- Abstract summary: We introduce Vision and Language Embeddings for Explainable WSI Representation (VLEER), a novel method designed to leverage vision features for WSI representation.<n>VLEER offers the unique advantage of interpretability, enabling direct human-readable insights into the results.
- Score: 3.695317701129061
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in vision-language models (VLMs) have shown remarkable potential in bridging visual and textual modalities. In computational pathology, domain-specific VLMs, which are pre-trained on extensive histopathology image-text datasets, have succeeded in various downstream tasks. However, existing research has primarily focused on the pre-training process and direct applications of VLMs on the patch level, leaving their great potential for whole slide image (WSI) applications unexplored. In this study, we hypothesize that pre-trained VLMs inherently capture informative and interpretable WSI representations through quantitative feature extraction. To validate this hypothesis, we introduce Vision and Language Embeddings for Explainable WSI Representation (VLEER), a novel method designed to leverage VLMs for WSI representation. We systematically evaluate VLEER on three pathological WSI datasets, proving its better performance in WSI analysis compared to conventional vision features. More importantly, VLEER offers the unique advantage of interpretability, enabling direct human-readable insights into the results by leveraging the textual modality for detailed pathology annotations, providing clear reasoning for WSI-level pathology downstream tasks.
Related papers
- HiLa: Hierarchical Vision-Language Collaboration for Cancer Survival Prediction [55.00788339683146]
We propose a novel Hierarchical vision-Language collaboration framework for improved survival prediction.<n> Specifically, HiLa employs pretrained feature extractors to generate hierarchical visual features from WSIs at both patch and region levels.<n>This ap-proach enables the comprehensive learning of discriminative visual features cor-responding to different survival-related attributes from prompts.
arXiv Detail & Related papers (2025-07-07T02:06:25Z) - GLIMPSE: Holistic Cross-Modal Explainability for Large Vision-Language Models [0.0]
We introduce GLIMPSE, a model-agnostic framework that jointly attributes LVLM outputs to the most relevant visual evidence and textual signals.<n>GLIMPSE fuses gradient-weighted attention, adaptive layer propagation, and relevance-weighted token aggregation to produce holistic response-level heat maps.<n>We demonstrate an analytic approach to uncover fine-grained insights into LVLM cross-modal attribution, trace reasoning dynamics, analyze systematic misalignment, diagnose hallucination and bias, and ensure transparency.
arXiv Detail & Related papers (2025-06-23T18:00:04Z) - An Empirical Study of Federated Prompt Learning for Vision Language Model [50.73746120012352]
This paper systematically investigates behavioral differences between language prompt learning and vision prompt learning.<n>We conduct experiments to evaluate the impact of various fl and prompt configurations, such as client scale, aggregation strategies, and prompt length.<n>We explore strategies for enhancing prompt learning in complex scenarios where label skew and domain shift coexist.
arXiv Detail & Related papers (2025-05-29T03:09:15Z) - Sparse Autoencoders Learn Monosemantic Features in Vision-Language Models [50.587868616659826]
Sparse Autoencoders (SAEs) have been shown to enhance interpretability and steerability in Large Language Models (LLMs)
In this work, we extend the application of SAEs to Vision-Language Models (VLMs), such as CLIP, and introduce a comprehensive framework for evaluating monosemanticity in vision representations.
arXiv Detail & Related papers (2025-04-03T17:58:35Z) - Text Speaks Louder than Vision: ASCII Art Reveals Textual Biases in Vision-Language Models [93.46875303598577]
Vision-language models (VLMs) have advanced rapidly in processing multimodal information, but their ability to reconcile conflicting signals remains underexplored.
This work investigates how VLMs process ASCII art, a unique medium where textual elements collectively form visual patterns, potentially creating semantic-visual conflicts.
arXiv Detail & Related papers (2025-04-02T10:47:07Z) - Beyond Semantics: Rediscovering Spatial Awareness in Vision-Language Models [10.792834356227118]
Vision-Language Models (VLMs) excel at identifying and describing objects but struggle with spatial reasoning.
Inspired by the dual-pathway (ventral-dorsal) model of human vision, we investigate why VLMs fail spatial tasks despite strong object recognition capabilities.
arXiv Detail & Related papers (2025-03-21T17:51:14Z) - VIPER: Visual Perception and Explainable Reasoning for Sequential Decision-Making [21.61801132083334]
VIPER is a novel framework for multimodal instruction-based planning.
It integrates VLM-based perception with LLM-based reasoning.
We show that VIPER significantly outperforms state-of-the-art visual instruction-based planners.
arXiv Detail & Related papers (2025-03-19T11:05:42Z) - PathAlign: A vision-language model for whole slide images in histopathology [13.567674461880905]
We develop a vision-language model based on the BLIP-2 framework using WSIs and curated text from pathology reports.
This enables applications utilizing a shared image-text embedding space, such as text or image retrieval for finding cases of interest.
We present pathologist evaluation of text generation and text retrieval using WSI embeddings, as well as results for WSI classification and workflow prioritization.
arXiv Detail & Related papers (2024-06-27T23:43:36Z) - Refining Skewed Perceptions in Vision-Language Models through Visual Representations [0.033483662989441935]
Large vision-language models (VLMs) have become foundational, demonstrating remarkable success across a variety of downstream tasks.<n>Despite their advantages, these models inherit biases from the disproportionate distribution of real-world data, leading to misconceptions about the actual environment.<n>This study presents an investigation into how a simple linear probe can effectively distill task-specific core features from CLIP's embedding for downstream applications.
arXiv Detail & Related papers (2024-05-22T22:03:11Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Generalizable Whole Slide Image Classification with Fine-Grained Visual-Semantic Interaction [17.989559761931435]
We propose a novel "Fine-grained Visual-Semantic Interaction" framework for WSI classification.
It is designed to enhance the model's generalizability by leveraging the interaction between localized visual patterns and fine-grained pathological semantics.
Our method demonstrates robust generalizability and strong transferability, dominantly outperforming the counterparts on the TCGA Lung Cancer dataset.
arXiv Detail & Related papers (2024-02-29T16:29:53Z) - A self-supervised framework for learning whole slide representations [52.774822784847565]
We present Slide Pre-trained Transformers (SPT) for gigapixel-scale self-supervision of whole slide images.
We benchmark SPT visual representations on five diagnostic tasks across three biomedical microscopy datasets.
arXiv Detail & Related papers (2024-02-09T05:05:28Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.
MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z) - SgVA-CLIP: Semantic-guided Visual Adapting of Vision-Language Models for
Few-shot Image Classification [84.05253637260743]
We propose a new framework, named Semantic-guided Visual Adapting (SgVA), to extend vision-language pre-trained models.
SgVA produces discriminative task-specific visual features by comprehensively using a vision-specific contrastive loss, a cross-modal contrastive loss, and an implicit knowledge distillation.
State-of-the-art results on 13 datasets demonstrate that the adapted visual features can well complement the cross-modal features to improve few-shot image classification.
arXiv Detail & Related papers (2022-11-28T14:58:15Z) - ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and
Intra-modal Knowledge Integration [48.01536973731182]
We introduce a new vision-and-language pretraining method called ROSITA.
It integrates the cross- and intra-modal knowledge in a unified scene graph to enhance the semantic alignments.
ROSITA significantly outperforms existing state-of-the-art methods on three typical vision-and-language tasks over six benchmark datasets.
arXiv Detail & Related papers (2021-08-16T13:16:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.