論文の概要: Fast and Accurate Gigapixel Pathological Image Classification with Hierarchical Distillation Multi-Instance Learning
- arxiv url: http://arxiv.org/abs/2502.21130v1
- Date: Fri, 28 Feb 2025 15:10:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:41:44.339216
- Title: Fast and Accurate Gigapixel Pathological Image Classification with Hierarchical Distillation Multi-Instance Learning
- Title(参考訳): 階層的蒸留多インスタンス学習を用いた高速かつ高精度ギガピクセル画像分類
- Authors: Jiuyang Dong, Junjun Jiang, Kui Jiang, Jiahan Li, Yongbing Zhang,
- Abstract要約: HDMILは階層的な蒸留マルチインスタンス学習フレームワークであり、無関係なパッチを排除して高速かつ正確な分類を実現する。
HDMILは、動的マルチインスタンスネットワーク(DMIN)と軽量インスタンスプレスクリーンネットワーク(LIPN)の2つの重要なコンポーネントで構成されている。
- 参考スコア(独自算出の注目度): 51.525891360380285
- License:
- Abstract: Although multi-instance learning (MIL) has succeeded in pathological image classification, it faces the challenge of high inference costs due to processing numerous patches from gigapixel whole slide images (WSIs). To address this, we propose HDMIL, a hierarchical distillation multi-instance learning framework that achieves fast and accurate classification by eliminating irrelevant patches. HDMIL consists of two key components: the dynamic multi-instance network (DMIN) and the lightweight instance pre-screening network (LIPN). DMIN operates on high-resolution WSIs, while LIPN operates on the corresponding low-resolution counterparts. During training, DMIN are trained for WSI classification while generating attention-score-based masks that indicate irrelevant patches. These masks then guide the training of LIPN to predict the relevance of each low-resolution patch. During testing, LIPN first determines the useful regions within low-resolution WSIs, which indirectly enables us to eliminate irrelevant regions in high-resolution WSIs, thereby reducing inference time without causing performance degradation. In addition, we further design the first Chebyshev-polynomials-based Kolmogorov-Arnold classifier in computational pathology, which enhances the performance of HDMIL through learnable activation layers. Extensive experiments on three public datasets demonstrate that HDMIL outperforms previous state-of-the-art methods, e.g., achieving improvements of 3.13% in AUC while reducing inference time by 28.6% on the Camelyon16 dataset.
- Abstract(参考訳): MIL (Multi-instance Learning) は画像分類に成功しているが, ギガピクセル全体の画像(WSI)から多数のパッチを処理するため, 高い推論コストの課題に直面している。
そこで本研究では,無関係なパッチを排除し,高速かつ正確な分類を実現する階層型蒸留マルチインスタンス学習フレームワークであるHDMILを提案する。
HDMILは、動的マルチインスタンスネットワーク(DMIN)と軽量インスタンスプレスクリーンネットワーク(LIPN)の2つの重要なコンポーネントで構成されている。
DMINは高解像度のWSIで動作し、LIPNは対応する低解像度のWSIで動作する。
トレーニング中、DMINはWSI分類のためにトレーニングされ、無関係なパッチを示す注意スコアベースのマスクを生成する。
これらのマスクは、LIPNのトレーニングをガイドし、各低解像度パッチの関連性を予測する。
テスト中、LIPNはまず低分解能 WSI 内の有用な領域を決定し、これは間接的に高分解能 WSI における無関係な領域を排除し、性能劣化を招くことなく推論時間を短縮する。
さらに,Chebyshev-polynomialsをベースとしたKolmogorov-Arnold分類器を計算病理学で設計し,学習可能なアクティベーション層を通じてHDMILの性能を向上させる。
3つの公開データセットに対する大規模な実験により、HDMILは従来の最先端メソッド、例えばAUCの3.13%の改善を達成し、Camelyon16データセットでは推論時間を28.6%削減した。
関連論文リスト
- An efficient framework based on large foundation model for cervical cytopathology whole slide image screening [13.744580492120749]
本稿では,教師なし・弱教師付き学習によるWSIレベルラベルのみを用いた頚部細胞病理学WSI分類のための効率的なフレームワークを提案する。
CSDおよびFNAC 2019データセットで実施された実験は、提案手法が様々なMIL手法の性能を高め、最先端(SOTA)性能を達成することを示した。
論文 参考訳(メタデータ) (2024-07-16T08:21:54Z) - Augmentation is AUtO-Net: Augmentation-Driven Contrastive Multiview
Learning for Medical Image Segmentation [3.1002416427168304]
この論文は網膜血管セグメンテーションの課題に焦点を当てている。
深層学習に基づく医用画像セグメンテーションアプローチの広範な文献レビューを提供する。
効率的でシンプルな多視点学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-02T06:31:08Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Multi-Level Contrastive Learning for Dense Prediction Task [59.591755258395594]
本稿では,高密度予測タスクのための領域レベルの特徴表現を効率よく学習するための,MCL(Multi-Level Contrastive Learning for Dense Prediction Task)を提案する。
本手法は, 局所化, スケールの整合性, 認識の3つの要因に動機付けられている。
提案手法は,様々なデータセットにおける最近の最先端の手法よりも有意なマージンを有する。
論文 参考訳(メタデータ) (2023-04-04T17:59:04Z) - Dual Attention Model with Reinforcement Learning for Classification of Histology Whole-Slide Images [8.404881822414898]
デジタル全スライド画像(WSI)は一般に顕微鏡分解能で撮影され、広い空間データを包含する。
本稿では,病理医の視覚検査に触発された2つの主成分からなる新しい二重注意アプローチを提案する。
提案手法は,WSIの10%未満を高い倍率で処理しながら,最先端の手法に匹敵する性能を実現する。
論文 参考訳(メタデータ) (2023-02-19T22:26:25Z) - Boosting Few-shot Fine-grained Recognition with Background Suppression
and Foreground Alignment [53.401889855278704]
FS-FGR (Few-shot Fine-fine Recognition) は、限られたサンプルの助けを借りて、新しいきめ細かなカテゴリを認識することを目的としている。
本研究では,背景アクティベーション抑制 (BAS) モジュール,フォアグラウンドオブジェクトアライメント (FOA) モジュール,および局所的局所的(L2L) 類似度測定器からなる2段階の背景アライメントとフォアグラウンドアライメントフレームワークを提案する。
複数のベンチマークで行った実験により,提案手法は既存の最先端技術よりも大きなマージンで優れていることが示された。
論文 参考訳(メタデータ) (2022-10-04T07:54:40Z) - RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional
Network for Retinal OCT Fluid Segmentation [3.57686754209902]
OCTガイド下治療には網膜液の定量化が必要である。
RetiFluidNetと呼ばれる新しい畳み込みニューラルアーキテクチャは、多クラス網膜流体セグメンテーションのために提案されている。
モデルは、テクスチャ、コンテキスト、エッジといった特徴の階層的な表現学習の恩恵を受ける。
論文 参考訳(メタデータ) (2022-09-26T07:18:00Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
本稿では,高品質なサリエンシキューを効果的に生成する2段階アクティベーション・ツー・サリエンシ(A2S)フレームワークを提案する。
トレーニングプロセス全体において、私たちのフレームワークにヒューマンアノテーションは関与していません。
本フレームワークは,既存のUSOD法と比較して高い性能を示した。
論文 参考訳(メタデータ) (2021-12-07T11:54:06Z) - Learning Compact Representations of Neural Networks using DiscriminAtive
Masking (DAM) [2.1629276606305057]
ディープラーニングにおける中心的な目標は、ニューラルネットワークのすべての層における機能のコンパクトな表現を学習することである。
離散型マスキング(DAM: DiscriminAtive Masking)と呼ばれる新しい単一ステージ型プルーニング法を提案する。
提案したDAMアプローチは,様々なアプリケーションに対して極めて優れた性能を示している。
論文 参考訳(メタデータ) (2021-10-01T23:31:46Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
本稿では,前立腺領域を高速に局在させる第1段階と,前立腺領域を正確に区分する第2段階の2段階のフレームワークを提案する。
マルチタスクネットワークにおけるボクセルワイドサンプリングによる新しいオンラインメトリック学習モジュールを提案する。
本手法は,従来のクロスエントロピー学習法やDice損失学習法と比較して,より代表的なボクセルレベルの特徴を効果的に学習することができる。
論文 参考訳(メタデータ) (2020-05-15T10:37:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。