論文の概要: Dynamically Local-Enhancement Planner for Large-Scale Autonomous Driving
- arxiv url: http://arxiv.org/abs/2502.21134v1
- Date: Fri, 28 Feb 2025 15:17:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:41:00.414281
- Title: Dynamically Local-Enhancement Planner for Large-Scale Autonomous Driving
- Title(参考訳): 大規模自律走行のための動的局所走行プランナ
- Authors: Nanshan Deng, Weitao Zhou, Bo Zhang, Junze Wen, Kun Jiang, Zhong Cao, Diange Yang,
- Abstract要約: 本稿では,基本運転プランナをローカル運転データで動的に拡張するという概念を紹介し,プランナ自体を永久に修正することなく実現する。
提案手法では,局所観測データから局所的な運転特徴を抽出するマルコフ決定過程の定式化とグラフニューラルネットワークを導入する。
その結果, 本手法は, より軽量なスケールを維持しつつ, 安全性(衝突率)と平均報酬の両方において, 基本方針よりも優れていた。
- 参考スコア(独自算出の注目度): 15.68766075910435
- License:
- Abstract: Current autonomous vehicles operate primarily within limited regions, but there is increasing demand for broader applications. However, as models scale, their limited capacity becomes a significant challenge for adapting to novel scenarios. It is increasingly difficult to improve models for new situations using a single monolithic model. To address this issue, we introduce the concept of dynamically enhancing a basic driving planner with local driving data, without permanently modifying the planner itself. This approach, termed the Dynamically Local-Enhancement (DLE) Planner, aims to improve the scalability of autonomous driving systems without significantly expanding the planner's size. Our approach introduces a position-varying Markov Decision Process formulation coupled with a graph neural network that extracts region-specific driving features from local observation data. The learned features describe the local behavior of the surrounding objects, which is then leveraged to enhance a basic reinforcement learning-based policy. We evaluated our approach in multiple scenarios and compared it with a one-for-all driving model. The results show that our method outperforms the baseline policy in both safety (collision rate) and average reward, while maintaining a lighter scale. This approach has the potential to benefit large-scale autonomous vehicles without the need for largely expanding on-device driving models.
- Abstract(参考訳): 現在の自動運転車は、主に限られた地域で運用されているが、幅広い用途への需要が高まっている。
しかし、モデルがスケールするにつれて、その限られた能力は、新しいシナリオに適応する上で重要な課題となる。
単一のモノリシックモデルを使用して、新しい状況のモデルを改善することはますます困難になっている。
この問題に対処するため,我々は,プランナー自体を永久に変更することなく,基本運転プランナーをローカル運転データで動的に拡張するという概念を紹介した。
Dynamically Local-Enhancement Planner(DLE)と呼ばれるこのアプローチは、プランナーのサイズを大幅に拡大することなく、自律運転システムのスケーラビリティを向上させることを目的としている。
本手法では,局所観測データから局所的な運転特徴を抽出するグラフニューラルネットワークと,位置変化型マルコフ決定過程の定式化を導入する。
学習した特徴は、周囲の物体の局所的な挙動を記述し、それを利用して基本的な強化学習に基づくポリシーを強化する。
このアプローチを複数のシナリオで評価し,それを1対1の運転モデルと比較した。
その結果, 本手法は, より軽量なスケールを維持しつつ, 安全性(衝突率)と平均報酬の両方において, 基本方針よりも優れていた。
このアプローチは、デバイス上での運転モデルを大きく拡張する必要なしに、大規模な自動運転車に利益をもたらす可能性がある。
関連論文リスト
- The Role of World Models in Shaping Autonomous Driving: A Comprehensive Survey [50.62538723793247]
ドライビング・ワールド・モデル(DWM)は、ドライビング・プロセス中のシーンの進化を予測することに焦点を当てている。
DWM法は、自律運転システムが動的運転環境をよりよく知覚し、理解し、相互作用することを可能にする。
論文 参考訳(メタデータ) (2025-02-14T18:43:15Z) - Diffusion-Based Planning for Autonomous Driving with Flexible Guidance [19.204115959760788]
閉ループ計画のための新しい変圧器ベース拡散プランナを提案する。
本モデルは,予測タスクと計画タスクの協調モデリングを支援する。
様々な運転スタイルで頑健な伝達性を持つ最先端の閉ループ性能を実現する。
論文 参考訳(メタデータ) (2025-01-26T15:49:50Z) - AdaWM: Adaptive World Model based Planning for Autonomous Driving [34.57859869929471]
世界モデルに基づく強化学習(RL)が自律運転の有望なアプローチとして登場した。
プレトレイン-ファイントゥンパラダイムは、オンラインRLが事前訓練されたモデルによってパフォーマンスされ、オフラインで学習されるポリシーで使用されることが多い。
本稿では,アダプティブ・ワールド・モデルに基づく計画手法であるAdaWMを紹介する。(a)ミスマッチを定量化し,微調整戦略を通知するミスマッチ識別と,(b)ポリシーやモデルを必要に応じて選択的に更新するアライメント駆動微調整である。
論文 参考訳(メタデータ) (2025-01-22T18:34:51Z) - DrivingGPT: Unifying Driving World Modeling and Planning with Multi-modal Autoregressive Transformers [61.92571851411509]
我々は、インターリーブ画像とアクショントークンに基づくマルチモーダル駆動言語を導入し、共同世界モデリングと計画を学ぶためのDrivingGPTを開発した。
我々のDrivingGPTは、アクション条件付きビデオ生成とエンドツーエンドプランニングの両方において強力なパフォーマンスを示し、大規模なnuPlanとNAVSIMベンチマークにおいて強力なベースラインを達成しています。
論文 参考訳(メタデータ) (2024-12-24T18:59:37Z) - End-to-end Driving in High-Interaction Traffic Scenarios with Reinforcement Learning [24.578178308010912]
これらの問題に対処するために,Ranmble というエンドツーエンドモデルベース RL アルゴリズムを提案する。
環境のダイナミックスモデルを学ぶことで、Rambleは今後のトラフィックイベントを予測し、より情報に富んだ戦略的決定を下すことができる。
Rambleは、CARLA Leaderboard 2.0におけるルート完了率と運転スコアに関する最先端のパフォーマンスを達成し、複雑でダイナミックな交通状況を管理する上での有効性を示している。
論文 参考訳(メタデータ) (2024-10-03T06:45:59Z) - Parameterized Decision-making with Multi-modal Perception for Autonomous
Driving [12.21578713219778]
AUTOと呼ばれる深層強化学習に基づくマルチモーダル認識を用いたパラメータ化意思決定フレームワークを提案する。
ハイブリッド報酬関数は、安全、交通効率、乗客の快適性、および最適な行動を生成するためのフレームワークを導く影響を考慮に入れている。
論文 参考訳(メタデータ) (2023-12-19T08:27:02Z) - Interpretable and Flexible Target-Conditioned Neural Planners For
Autonomous Vehicles [22.396215670672852]
以前の作業では、1つの計画軌跡を見積もることしか学ばず、現実のシナリオでは複数の許容可能な計画が存在する場合もあります。
本稿では,自律走行車における鳥の視線における複数の潜在的目標を効果的に表現する,熱マップを回帰する解釈可能なニューラルプランナーを提案する。
Lyft Openデータセットの体系的な評価から、当社のモデルは、以前の作業よりも安全で柔軟な運転パフォーマンスを実現しています。
論文 参考訳(メタデータ) (2023-09-23T22:13:03Z) - Dual policy as self-model for planning [71.73710074424511]
エージェントの自己モデルとして決定をシミュレートするために使用されるモデルについて述べる。
現在の強化学習アプローチと神経科学にインスパイアされた我々は、蒸留政策ネットワークを自己モデルとして利用することの利点と限界を探求する。
論文 参考訳(メタデータ) (2023-06-07T13:58:45Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVEは、特定のプランナーが衝突のような望ましくない振る舞いを発生させるような、困難なシナリオを自動的に生成する手法である。
シナリオの妥当性を維持するために、キーとなるアイデアは、グラフベースの条件付きVAEという形で、学習した交通運動モデルを活用することである。
その後の最適化は、シナリオの"解決"を見つけるために使用され、与えられたプランナーを改善するのに有効である。
論文 参考訳(メタデータ) (2021-12-09T18:03:27Z) - Learning to drive from a world on rails [78.28647825246472]
モデルベースアプローチによって,事前記録された運転ログからインタラクティブな視覚ベースの運転方針を学習する。
世界の前方モデルは、あらゆる潜在的な運転経路の結果を予測する運転政策を監督する。
提案手法は,carla リーダボードにまずランク付けし,40 倍少ないデータを用いて25%高い運転スコアを得た。
論文 参考訳(メタデータ) (2021-05-03T05:55:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。