論文の概要: Gaussian process surrogate model to approximate power grid simulators -- An application to the certification of a congestion management controller
- arxiv url: http://arxiv.org/abs/2503.00094v1
- Date: Fri, 28 Feb 2025 18:10:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:17:05.456686
- Title: Gaussian process surrogate model to approximate power grid simulators -- An application to the certification of a congestion management controller
- Title(参考訳): ガウス過程シュロゲートモデルによる電力グリッドシミュレータの近似 -- 混雑管理制御器の認証への適用-
- Authors: Pierre Houdouin, Manuel Ruiz, Lucas Saludjian,
- Abstract要約: 電力グリッドのデジタル化により、物理方程式はネットワークの振舞いを記述するのに不十分になる。
多数のシナリオをシミュレートする安全性検証のような数値実験は、計算的に難解になる。
一般的な解決策は、シミュレータのサロゲートモデルを機械学習(ML)で学習し、高速で評価可能なサロゲートモデルで直接実験を実行することである。
- 参考スコア(独自算出の注目度): 2.206623168926072
- License:
- Abstract: With the digitalization of power grids, physical equations become insufficient to describe the network's behavior, and realistic but time-consuming simulators must be used. Numerical experiments, such as safety validation, that involve simulating a large number of scenarios become computationally intractable. A popular solution to reduce the computational burden is to learn a surrogate model of the simulator with Machine Learning (ML) and then conduct the experiment directly on the fast-to-evaluate surrogate model. Among the various ML possibilities for building surrogate models, Gaussian processes (GPs) emerged as a popular solution due to their flexibility, data efficiency, and interpretability. Their probabilistic nature enables them to provide both predictions and uncertainty quantification (UQ). This paper starts with a discussion on the interest of using GPs to approximate power grid simulators and fasten numerical experiments. Such simulators, however, often violate the GP's underlying Gaussian assumption, leading to poor approximations. To address this limitation, an approach that consists in adding an adaptive residual uncertainty term to the UQ is proposed. It enables the GP to remain accurate and reliable despite the simulator's non-Gaussian behaviors. This approach is successfully applied to the certification of the proper functioning of a congestion management controller, with over 98% of simulations avoided.
- Abstract(参考訳): 電力グリッドのデジタル化により、物理方程式はネットワークの振舞いを記述するのに不十分になり、現実的だが時間を要するシミュレータを使用する必要がある。
多数のシナリオをシミュレートする安全性検証のような数値実験は、計算的に難解になる。
計算負担を軽減するための一般的な解決策は、シミュレータのサロゲートモデルを機械学習(ML)で学習し、高速で評価可能なサロゲートモデルで直接実験を行うことである。
代理モデルを構築するための様々なML可能性の中で、ガウス過程(GP)は、その柔軟性、データ効率、解釈可能性のために一般的なソリューションとして登場した。
その確率的性質により、予測と不確実性定量化(UQ)の両方を提供することができる。
本稿では,GPを用いて電力グリッドシミュレータを近似し,数値実験を高速化することに関心を持つ。
しかし、そのようなシミュレータはしばしばGPのガウス的仮定に反し、近似が貧弱になる。
この制限に対処するため、適応的残留不確かさ項をUQに追加するアプローチを提案する。
これにより、シミュレータの非ガウス的挙動にもかかわらず、GPは正確で信頼性が保たれる。
このアプローチは、シミュレーションの98%以上を回避し、渋滞管理コントローラの適切な機能認定に成功している。
関連論文リスト
- Active Sequential Posterior Estimation for Sample-Efficient Simulation-Based Inference [12.019504660711231]
逐次的神経後部推定(ASNPE)を導入する。
ASNPEは、シミュレーションパラメータ候補の効用を基礎となる確率モデルに推定するために、推論ループにアクティブな学習スキームをもたらす。
提案手法は,大規模実世界の交通ネットワークにおいて,高度に調整されたベンチマークと最先端の後方推定手法より優れる。
論文 参考訳(メタデータ) (2024-12-07T08:57:26Z) - The Power of Resets in Online Reinforcement Learning [73.64852266145387]
ローカルシミュレータアクセス(あるいはローカルプランニング)を用いたオンライン強化学習を通してシミュレータのパワーを探求する。
カバー性が低いMPPは,Qstar$-realizabilityのみのサンプル効率で学習可能であることを示す。
ローカルシミュレーターアクセス下では, 悪名高いExogenous Block MDP問題が抽出可能であることを示す。
論文 参考訳(メタデータ) (2024-04-23T18:09:53Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
本研究では、学習したガウス過程を利用して人間の運転行動を予測する自動運転車のモデル予測制御手法を提案する。
マルチモード予測制御アプローチは、人間のドライバーの意図を考察する。
論文 参考訳(メタデータ) (2023-03-08T17:14:57Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - Hybrid Gaussian Process Modeling Applied to Economic Stochastic Model
Predictive Control of Batch Processes [0.0]
植物モデルはしばしば第一原理から決定され、モデルの一部が物理的法則のみを用いて導出することが困難である。
本稿ではGPを用いて、第一原理を用いて記述が難しい動的システムのパーツをモデル化する。
この不確実性を制御アルゴリズムで考慮し、制約違反や性能劣化を防止することが不可欠である。
論文 参考訳(メタデータ) (2021-08-14T00:01:42Z) - A Doubly Stochastic Simulator with Applications in Arrivals Modeling and
Simulation [8.808993671472349]
本稿では,モンテカルロシミュレータとワッサーシュタイン生成逆数ネットワークを統合して,広範囲の到着過程をモデル化し,推定し,シミュレーションするフレームワークを提案する。
古典的モンテカルロシミュレータはポアソンオブジェクトの解釈可能な「物理」を捉えるのに利点があるが、ニューラルネットベースのシミュレータは高次元分布における解釈できない複雑な依存を捉えるのに利点がある。
論文 参考訳(メタデータ) (2020-12-27T13:32:16Z) - Simulation-efficient marginal posterior estimation with swyft: stop
wasting your precious time [5.533353383316288]
本研究では,ネスト型ニューラル・サイエンス・ツー・エビデンス比推定とシミュレーションの再利用のためのアルゴリズムを提案する。
これらのアルゴリズムが組み合わさって、縁部および関節後部の自動的および極端にシミュレーターによる効率的な推定を可能にする。
論文 参考訳(メタデータ) (2020-11-27T19:00:07Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
サーロゲートモデルは、シミュレータ評価の回数を減らすために、可能性のない推論に成功している。
本稿では,より不規則な対象分布を扱えるディープガウス過程(DGP)サロゲートモデルを提案する。
本実験は,DGPがマルチモーダル分布を持つ目的関数上でGPよりも優れ,単調な場合と同等の性能を維持できることを示す。
論文 参考訳(メタデータ) (2020-06-18T14:24:05Z) - DISCO: Double Likelihood-free Inference Stochastic Control [29.84276469617019]
確率自由推論のためのベイズ統計学における現代シミュレータのパワーと最近の技術を活用することを提案する。
シミュレーションパラメータの後方分布は、システムの潜在的非解析モデルによって伝播される。
実験により、制御器の提案により、古典的な制御やロボット工学のタスクにおいて、優れた性能と堅牢性が得られることが示された。
論文 参考訳(メタデータ) (2020-02-18T05:29:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。