論文の概要: PreMind: Multi-Agent Video Understanding for Advanced Indexing of Presentation-style Videos
- arxiv url: http://arxiv.org/abs/2503.00162v1
- Date: Fri, 28 Feb 2025 20:17:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:26:56.819979
- Title: PreMind: Multi-Agent Video Understanding for Advanced Indexing of Presentation-style Videos
- Title(参考訳): PreMind:プレゼンテーションスタイルのビデオのインデックス作成のためのマルチエージェントビデオ理解
- Authors: Kangda Wei, Zhengyu Zhou, Bingqing Wang, Jun Araki, Lukas Lange, Ruihong Huang, Zhe Feng,
- Abstract要約: PreMindは講義ビデオの理解とインデクシングのための新しいマルチエージェントマルチモーダルフレームワークである。
スライドの視覚的内容の抽出、音声の物語の書き起こし、これらの視覚的内容と音声的内容の統合化という3つの重要なステップを通じて、マルチモーダルインデックスを生成する。
VLMを用いた音声書き起こし誤りの検出・訂正や、視覚分析における動的反復自己回帰のための批判エージェントの利用などである。
- 参考スコア(独自算出の注目度): 22.39414772037232
- License:
- Abstract: In recent years, online lecture videos have become an increasingly popular resource for acquiring new knowledge. Systems capable of effectively understanding/indexing lecture videos are thus highly desirable, enabling downstream tasks like question answering to help users efficiently locate specific information within videos. This work proposes PreMind, a novel multi-agent multimodal framework that leverages various large models for advanced understanding/indexing of presentation-style videos. PreMind first segments videos into slide-presentation segments using a Vision-Language Model (VLM) to enhance modern shot-detection techniques. Each segment is then analyzed to generate multimodal indexes through three key steps: (1) extracting slide visual content, (2) transcribing speech narratives, and (3) consolidating these visual and speech contents into an integrated understanding. Three innovative mechanisms are also proposed to improve performance: leveraging prior lecture knowledge to refine visual understanding, detecting/correcting speech transcription errors using a VLM, and utilizing a critic agent for dynamic iterative self-reflection in vision analysis. Compared to traditional video indexing methods, PreMind captures rich, reliable multimodal information, allowing users to search for details like abbreviations shown only on slides. Systematic evaluations on the public LPM dataset and an internal enterprise dataset are conducted to validate PreMind's effectiveness, supported by detailed analyses.
- Abstract(参考訳): 近年,オンライン講義ビデオが新たな知識獲得の場として人気が高まっている。
講義ビデオを効果的に理解・インデクシングできるシステムは非常に望ましいので、質問応答のような下流のタスクがビデオ内の特定の情報を効率的に見つけるのに役立つ。
プレゼンテーションスタイルのビデオの高度な理解/インデクシングに様々な大規模モデルを活用する,新しいマルチエージェントマルチモーダルフレームワークであるPreMindを提案する。
PreMindは、映像をVLM(Vision-Language Model)を使用してスライド表示セグメントに分割し、現代のショット検出技術を強化する。
次に各セグメントを解析して,(1)スライド映像内容の抽出,(2)音声物語の翻訳,(3)これらの視覚的内容と音声的内容の統合化という3つの重要なステップを通じて,マルチモーダル・インデックスを生成する。
VLMを用いた音声書き起こし誤りの検出・訂正や、視覚分析における動的反復自己回帰のための批判エージェントの利用などである。
従来のビデオインデックス手法と比較して、PreMindはリッチで信頼性の高いマルチモーダル情報をキャプチャし、ユーザーはスライドにのみ表示される略語などの詳細を検索できる。
パブリックLPMデータセットと社内エンタープライズデータセットの体系的評価を行い、詳細な分析によって支援されたPreMindの有効性を検証する。
関連論文リスト
- Realizing Video Summarization from the Path of Language-based Semantic Understanding [19.825666473712197]
本稿では,Mixture of Experts(MoE)パラダイムに触発された新しいビデオ要約フレームワークを提案する。
提案手法は,複数のビデオLLMを統合し,包括的で一貫性のあるテキスト要約を生成する。
論文 参考訳(メタデータ) (2024-10-06T15:03:22Z) - VIMI: Grounding Video Generation through Multi-modal Instruction [89.90065445082442]
既存のテキスト間拡散モデルは、事前訓練のためにテキストのみのエンコーダにのみ依存する。
検索手法を用いて大規模マルチモーダル・プロンプト・データセットを構築し,テキスト・プロンプトとテキスト・プロンプトのペア化を行う。
マルチモーダル命令を組み込んだ3つのビデオ生成タスクにおいて,第1ステージからモデルを微調整する。
論文 参考訳(メタデータ) (2024-07-08T18:12:49Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - Tuning Large Multimodal Models for Videos using Reinforcement Learning from AI Feedback [38.708690624594794]
ビデオとテキストのマルチモーダルアライメントは、主にマルチモーダル命令・チューンデータのボリュームと品質が不足しているため、依然として困難である。
本稿では,AIフィードバックからの強化学習(Reinforcement Learning from AI Feedback, RLAIF)と呼ばれる,マルチモーダルAIシステムを用いた新たなアライメント戦略を提案する。
具体的には、嗜好フィードバックの生成中に、詳細な映像記述を文脈として提供することによって、文脈対応報酬モデルを提案する。
論文 参考訳(メタデータ) (2024-02-06T06:27:40Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
ダイナミックスビデオのモデリングのため、ビデオ事前トレーニングは難しい。
本稿では,ビデオ事前学習におけるこのような制限を,効率的なビデオ分解によって解決する。
筆者らのフレームワークは,13のマルチモーダルベンチマークにおいて,画像と映像のコンテントの理解と生成が可能であることを実証した。
論文 参考訳(メタデータ) (2024-02-05T16:30:49Z) - VidCoM: Fast Video Comprehension through Large Language Models with Multimodal Tools [44.78291853329394]
textbfVidCoMは、Large Language Models (LLM)を活用して、軽量なビジュアルツールを使用して動画を推論する高速適応フレームワークである。
InsOVERアルゴリズムは、言語命令の分解とビデオイベントの間の効率的なハンガリー語マッチングに基づいて、対応するビデオイベントを特定する。
論文 参考訳(メタデータ) (2023-10-16T17:05:56Z) - Video-Teller: Enhancing Cross-Modal Generation with Fusion and
Decoupling [79.49128866877922]
Video-Tellerは、マルチモーダル融合と微粒なモーダルアライメントを利用するビデオ言語基盤モデルである。
Video-Tellerは、凍結した事前訓練されたビジョンと言語モジュールを利用することで、トレーニング効率を高める。
大規模言語モデルの堅牢な言語機能を活用し、簡潔かつ精巧なビデオ記述の生成を可能にする。
論文 参考訳(メタデータ) (2023-10-08T03:35:27Z) - Language as the Medium: Multimodal Video Classification through text
only [3.744589644319257]
マルチモーダル映像情報をキャプチャする詳細なテキスト記述を生成するためのモデルに依存しない新しい手法を提案する。
本手法は, GPT-3.5 や Llama2 といった大規模言語モデルによって学習された広範な知識を活用する。
UCF-101 や Kinetics などの一般的な行動認識ベンチマークによる評価は,これらの文脈に富んだ記述をビデオ理解タスクでうまく利用できることを示す。
論文 参考訳(メタデータ) (2023-09-19T17:32:21Z) - GPT4Image: Large Pre-trained Models Help Vision Models Learn Better on Perception Task [47.1857510710807]
我々はGPT4Imageと呼ばれる新しい学習フレームワークを提案し、CNNやViTがより良い表現を学ぶのに役立つ大規模な事前学習モデルの知識を抽出する。
本研究では,様々な視覚認知タスクにおける提案アルゴリズムの有効性を検証するために,広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-06-01T14:02:45Z) - Let's Think Frame by Frame with VIP: A Video Infilling and Prediction
Dataset for Evaluating Video Chain-of-Thought [62.619076257298204]
我々は、少数のビデオ推論のシーケンシャルな理解として、フレーミングビデオ推論を動機付けている。
VIPは、ビデオチェーンオブ思考を通してモデルの推論能力を調べるために設計された、推論時の課題データセットである。
我々は、VIP上でGPT-4、GPT-3、VICUNAをベンチマークし、複雑なビデオ推論タスクのパフォーマンスギャップを実証し、今後の作業を促進する。
論文 参考訳(メタデータ) (2023-05-23T10:26:42Z) - Self-Supervised Video Representation Learning with Motion-Contrastive
Perception [13.860736711747284]
モーションコントラスト知覚ネットワーク(MCPNet)
MCPNetは、MIP(Motion Information Perception)とCIP(Contrastive Instance Perception)の2つのブランチから構成される。
本手法は,現在最先端の視覚のみによる自己監督手法よりも優れています。
論文 参考訳(メタデータ) (2022-04-10T05:34:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。