論文の概要: Foundation-Model-Boosted Multimodal Learning for fMRI-based Neuropathic Pain Drug Response Prediction
- arxiv url: http://arxiv.org/abs/2503.00210v1
- Date: Fri, 28 Feb 2025 21:50:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:26:05.724699
- Title: Foundation-Model-Boosted Multimodal Learning for fMRI-based Neuropathic Pain Drug Response Prediction
- Title(参考訳): fMRIを用いた神経障害性痛覚薬の反応予測のための基礎モデルによるマルチモーダル学習
- Authors: Wenrui Fan, L. M. Riza Rizky, Jiayang Zhang, Chen Chen, Haiping Lu, Kevin Teh, Dinesh Selvarajah, Shuo Zhou,
- Abstract要約: FMM$_TC$は、fMRIに基づく神経因性鎮痛薬の反応予測のための基礎モデルを用いたマルチモーダル学習フレームワークである。
FMM$_TC$は、2つのrs-fMRIモダリティから補完情報を統合する。
FMM$_TC$の表現能力、一般化可能性、および既存の単モードfMRIモデルに対するクロスデータセット適応性を示す。
- 参考スコア(独自算出の注目度): 8.049129443071834
- License:
- Abstract: Neuropathic pain, affecting up to 10% of adults, remains difficult to treat due to limited therapeutic efficacy and tolerability. Although resting-state functional MRI (rs-fMRI) is a promising non-invasive measurement of brain biomarkers to predict drug response in therapeutic development, the complexity of fMRI demands machine learning models with substantial capacity. However, extreme data scarcity in neuropathic pain research limits the application of high-capacity models. To address the challenge of data scarcity, we propose FMM$_{TC}$, a Foundation-Model-boosted Multimodal learning framework for fMRI-based neuropathic pain drug response prediction, which leverages both internal multimodal information in pain-specific data and external knowledge from large pain-agnostic data. Specifically, to maximize the value of limited pain-specific data, FMM$_{TC}$ integrates complementary information from two rs-fMRI modalities: Time series and functional Connectivity. FMM$_{TC}$ is further boosted by an fMRI foundation model with its external knowledge from extensive pain-agnostic fMRI datasets enriching limited pain-specific information. Evaluations with an in-house dataset and a public dataset from OpenNeuro demonstrate FMM$_{TC}$'s superior representation ability, generalizability, and cross-dataset adaptability over existing unimodal fMRI models that only consider one of the rs-fMRI modalities. The ablation study validates the effectiveness of multimodal learning and foundation-model-powered external knowledge transfer in FMM$_{TC}$. An integrated gradient-based interpretation study explains how FMM$_{TC}$'s cross-dataset dynamic behaviors enhance its adaptability. In conclusion, FMM$_{TC}$ boosts clinical trials in neuropathic pain therapeutic development by accurately predicting drug responses to improve the participant stratification efficiency.
- Abstract(参考訳): 成人の10%に影響を及ぼす神経病性痛みは、治療効果の制限と耐久性のために治療が困難である。
安静時機能MRI(rs-fMRI)は脳バイオマーカーを非侵襲的に測定することで治療薬の反応を予測するが、fMRIの複雑さは十分な能力を持つ機械学習モデルを必要とする。
しかし、神経因性痛みの研究における極端なデータ不足は、高容量モデルの適用を制限する。
FMM$_{TC}$, FMM-boosted Multimodal learning framework for fMRI based neuropathic pain drug response prediction, which is leverageing the internal multimodal information in pain-specific data and external knowledge from large pain-agnostic data。
具体的には、限られた痛覚データの価値を最大化するために、FMM$_{TC}$は、2つのrs-fMRIモダリティ(時系列と関数接続性)の相補的な情報を統合する。
FMM$_{TC}$ はさらに fMRI ファンデーションモデルによって強化される。
社内データセットとOpenNeuroの公開データセットによる評価は、rs-fMRIのモダリティの1つしか考慮していない既存の単調fMRIモデルに対して、FMM$_{TC}$の優れた表現能力、一般化可能性、およびクロスデータセット適応性を示す。
アブレーション研究はFMM$_{TC}$におけるマルチモーダル学習と基礎モデルを用いた外部知識伝達の有効性を検証する。
積分勾配に基づく解釈研究は、FMM$_{TC}$のクロスデータセットの動的挙動がどのように適応性を高めるかを説明する。
結論として、FMM$_{TC}$は、薬剤反応を正確に予測し、参加者の層状化効率を向上させることにより、神経因性痛み治療における臨床試験を促進する。
関連論文リスト
- DDEvENet: Evidence-based Ensemble Learning for Uncertainty-aware Brain Parcellation Using Diffusion MRI [5.757390718589337]
EVENetは、拡散MRIを用いた解剖学的脳解析のためのエビデンスベースのエンサンブルニューラルネットワークである。
健常層および臨床集団の異なるデータセットの正確なパーセレーションと不確実性の推定値を得た。
この不確実性評価により,EVENet法は病変症例の異常脳領域の検出に有効であることが示された。
論文 参考訳(メタデータ) (2024-09-11T05:26:23Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
変動型オートエンコーダ(VAE)ベースのモデルであるDemoVAEを作成し、人口統計学から fMRI の特徴を推定する。
ユーザが供給する人口動態に基づいて,高品質な合成fMRIデータを生成する。
論文 参考訳(メタデータ) (2024-05-13T17:49:20Z) - MMIST-ccRCC: A Real World Medical Dataset for the Development of Multi-Modal Systems [12.914295902429]
本稿では,MMIST-CCRCCと呼ばれる実世界のマルチモーダルデータセットを紹介する。
このデータセットは、クリア細胞腎細胞癌(ccRCC)618例の2つの放射線学的モダリティ(CTとMRI)、病理組織学、ゲノム学、臨床データからなる。
このような深刻な欠落率であっても、モダリティの融合は生存予測の改善につながることを示す。
論文 参考訳(メタデータ) (2024-05-02T18:29:05Z) - Improving cross-domain brain tissue segmentation in fetal MRI with synthetic data [1.1936126505067601]
胎児脳MRIにおける領域ランダム化手法であるFetal SynthSegを紹介する。
以上の結果から,合成データのみにトレーニングされたモデルは,実データにトレーニングされたモデルよりも優れていた。
評価は低磁場(0.55T)MRIで得られた40例に拡張し,新しいSRモデルを用いて再構成した。
論文 参考訳(メタデータ) (2024-03-22T10:42:25Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Complex-valued Federated Learning with Differential Privacy and MRI Applications [51.34714485616763]
複雑な値を持つガウスのメカニズムを導入し、その振る舞いは$f$-DP、$(varepsilon, delta)$-DP、R'enyi-DPで特徴づけられる。
本稿では,DPと互換性のある複雑なニューラルネットワークプリミティブを提案する。
実験では,実世界の課題に対して,DPを用いた複合数値ニューラルネットワークを訓練することで概念実証を行う。
論文 参考訳(メタデータ) (2021-10-07T14:03:00Z) - MRI-based Alzheimer's disease prediction via distilling the knowledge in
multi-modal data [0.0]
MCI変換予測のために,マルチモーダルデータから学んだ知識をMRIベースのネットワークに抽出することを目的としたマルチモーダルマルチインスタンス蒸留方式を提案する。
本研究は、マルチモーダル情報から抽出した余計な監視を活用し、MRIに基づく予測モデルの改善を試みる最初の研究です。
論文 参考訳(メタデータ) (2021-04-08T09:06:39Z) - Brain Image Synthesis with Unsupervised Multivariate Canonical
CSC$\ell_4$Net [122.8907826672382]
我々は,新しいCSC$ell_4$Netを用いて,イントレとイントラモーダルの両方にまたがる専用特徴を学習することを提案する。
論文 参考訳(メタデータ) (2021-03-22T05:19:40Z) - Incorporating structured assumptions with probabilistic graphical models
in fMRI data analysis [5.23143327587266]
我々は、fMRI研究の様々な領域で最近開発されたアルゴリズムについてレビューする。
これらのアルゴリズムも同様にfMRIの課題に取り組む。
認知神経科学における明示的モデル構築のより広範な採用を提唱する。
論文 参考訳(メタデータ) (2020-05-11T06:32:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。