論文の概要: Breaking the Loop: Detecting and Mitigating Denial-of-Service Vulnerabilities in Large Language Models
- arxiv url: http://arxiv.org/abs/2503.00416v1
- Date: Sat, 01 Mar 2025 09:32:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:20:47.359029
- Title: Breaking the Loop: Detecting and Mitigating Denial-of-Service Vulnerabilities in Large Language Models
- Title(参考訳): ループを破る - 大規模言語モデルにおけるサービス障害の検出と緩和
- Authors: Junzhe Yu, Yi Liu, Huijia Sun, Ling Shi, Yuqi Chen,
- Abstract要約: LLM(Large Language Models)は、教育、ソフトウェア開発、医療、エンターテイメント、法律サービスなど、幅広い分野のアプリケーションに不可欠な、高度なテキスト理解と生成を持つ。
モデルが同じあるいは同じ出力を繰り返し生成するリカレントジェネレーションは、レイテンシの増加と潜在的なDoS(DoS)脆弱性を引き起こす。
本稿では,LLama-3 や GPT-4o などの著名な LLM における再帰発生シナリオを効率よく同定するブラックボックス進化アルゴリズムである RecurrentGenerator を提案する。
- 参考スコア(独自算出の注目度): 4.046135652393372
- License:
- Abstract: Large Language Models (LLMs) have significantly advanced text understanding and generation, becoming integral to applications across education, software development, healthcare, entertainment, and legal services. Despite considerable progress in improving model reliability, latency remains under-explored, particularly through recurrent generation, where models repeatedly produce similar or identical outputs, causing increased latency and potential Denial-of-Service (DoS) vulnerabilities. We propose RecurrentGenerator, a black-box evolutionary algorithm that efficiently identifies recurrent generation scenarios in prominent LLMs like LLama-3 and GPT-4o. Additionally, we introduce RecurrentDetector, a lightweight real-time classifier trained on activation patterns, achieving 95.24% accuracy and an F1 score of 0.87 in detecting recurrent loops. Our methods provide practical solutions to mitigate latency-related vulnerabilities, and we publicly share our tools and data to support further research.
- Abstract(参考訳): LLM(Large Language Models)は、教育、ソフトウェア開発、医療、エンターテイメント、法律サービスなど、幅広い分野のアプリケーションに不可欠な、高度なテキスト理解と生成を持つ。
モデルの信頼性が大幅に向上したにもかかわらず、特に、モデルが繰り返し同じあるいは同一の出力を生成し、レイテンシが増加し、潜在的なDoS(DoS)脆弱性が発生するという、遅延の探索は未解決のままである。
本稿では,LLama-3 や GPT-4o などの著名な LLM における再帰発生シナリオを効率よく同定するブラックボックス進化アルゴリズムである RecurrentGenerator を提案する。
さらに、アクティベーションパターンに基づいてトレーニングされた軽量リアルタイム分類器であるRecurrentDetectorを導入し、リカレントループの検出において95.24%の精度とF1スコアの0.87を達成した。
当社の手法はレイテンシ関連の脆弱性を軽減するための実用的なソリューションを提供し、さらなる研究を支援するためのツールとデータを公開しています。
関連論文リスト
- Adversarial Reasoning at Jailbreaking Time [49.70772424278124]
テスト時間計算による自動ジェイルブレイクに対する逆推論手法を開発した。
我々のアプローチは、LSMの脆弱性を理解するための新しいパラダイムを導入し、より堅牢で信頼性の高いAIシステムの開発の基礎を築いた。
論文 参考訳(メタデータ) (2025-02-03T18:59:01Z) - Breaking Focus: Contextual Distraction Curse in Large Language Models [68.4534308805202]
大規模言語モデル(LLM)の重大な脆弱性について検討する。
この現象は、セマンティック・コヒーレントだが無関係な文脈で修正された質問に対して、モデルが一貫した性能を維持することができないときに発生する。
本稿では,CDVの例を自動生成する効率的な木探索手法を提案する。
論文 参考訳(メタデータ) (2025-02-03T18:43:36Z) - LLM Assisted Anomaly Detection Service for Site Reliability Engineers: Enhancing Cloud Infrastructure Resilience [5.644170923282226]
本稿では,産業時系列データに適した汎用APIを備えたスケーラブルな異常検出サービスを提案する。
サービスの利用パターンに関する洞察を提供しています。年間500人以上のユーザと20万のAPIコールがあります。
時系列基礎モデルを含むシステムを拡張し、ゼロショット異常検出機能を実現する計画である。
論文 参考訳(メタデータ) (2025-01-28T06:41:37Z) - Enhanced Intrusion Detection in IIoT Networks: A Lightweight Approach with Autoencoder-Based Feature Learning [0.0]
侵入検知システム(IDS)は,異常なネットワーク行動や悪質な活動の検出・防止に不可欠である。
本研究は,次元縮小のためのオートエンコーダの活用を含む,IDS性能向上のための6つの革新的なアプローチを実装した。
我々はJetson Nano上で最初にモデルをデプロイし、バイナリ分類では0.185ms、マルチクラス分類では0.187msの推論時間を達成する。
論文 参考訳(メタデータ) (2025-01-25T16:24:18Z) - An Early FIRST Reproduction and Improvements to Single-Token Decoding for Fast Listwise Reranking [50.81324768683995]
FIRSTは、学習からランクへの目的を統合し、最初の生成されたトークンのみのロジットを活用する新しいアプローチである。
我々は、FIRSTの評価をTRECディープラーニングデータセット(DL19-22)に拡張し、様々な領域でその堅牢性を検証する。
我々の実験は、単一トークンの高速リランクは、ドメイン外リランクの品質を損なうものではないことを確認した。
論文 参考訳(メタデータ) (2024-11-08T12:08:17Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - Real-Time Anomaly Detection and Reactive Planning with Large Language Models [18.57162998677491]
例えば、大規模な言語モデル(LLM)は、インターネットスケールのデータに基づいて訓練され、ゼロショット機能を持つ。
本稿では,潜在的な異常に関する判断を安全な制御フレームワークに組み込む2段階の推論フレームワークを提案する。
これにより、モニターは、四輪車や自動運転車のような動的ロボットシステムの信頼性を向上させることができる。
論文 参考訳(メタデータ) (2024-07-11T17:59:22Z) - An Unbiased Transformer Source Code Learning with Semantic Vulnerability
Graph [3.3598755777055374]
現在の脆弱性スクリーニング技術は、新しい脆弱性を特定したり、開発者がコード脆弱性と分類を提供するのに効果がない。
これらの問題に対処するために,変換器 "RoBERTa" とグラフ畳み込みニューラルネットワーク (GCN) を組み合わせたマルチタスク・アンバイアス脆弱性分類器を提案する。
本稿では、逐次フロー、制御フロー、データフローからエッジを統合することで生成されたソースコードからのセマンティック脆弱性グラフ(SVG)表現と、Poacher Flow(PF)と呼ばれる新しいフローを利用したトレーニングプロセスを提案する。
論文 参考訳(メタデータ) (2023-04-17T20:54:14Z) - A Generative Framework for Low-Cost Result Validation of Machine Learning-as-a-Service Inference [4.478182379059458]
FidesはML-as-a-Service(ML)推論のリアルタイム整合性検証のための新しいフレームワークである。
Fidesは、統計的分析とばらつき測定を使用して、サービスモデルが攻撃を受けている場合、高い確率で識別するクライアント側攻撃検出モデルを備えている。
攻撃検出と再分類モデルの訓練のための生成的逆ネットワークフレームワークを考案した。
論文 参考訳(メタデータ) (2023-03-31T19:17:30Z) - FIRE: A Failure-Adaptive Reinforcement Learning Framework for Edge Computing Migrations [52.85536740465277]
FIREは、エッジコンピューティングのディジタルツイン環境でRLポリシーをトレーニングすることで、まれなイベントに適応するフレームワークである。
ImREは重要なサンプリングに基づくQ-ラーニングアルゴリズムであり、希少事象をその値関数への影響に比例してサンプリングする。
FIREは故障時にバニラRLやグリーディベースラインと比較してコストを削減できることを示す。
論文 参考訳(メタデータ) (2022-09-28T19:49:39Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
より達成可能な学習目標を持つ緩和された損失に基づく新しい学習フレームワークを提案する。
RelaxLossは、簡単な実装と無視可能なオーバーヘッドのメリットを加えた任意の分類モデルに適用できる。
当社のアプローチはMIAに対するレジリエンスの観点から,常に最先端の防御機構より優れています。
論文 参考訳(メタデータ) (2022-07-12T19:34:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。