DashCop: Automated E-ticket Generation for Two-Wheeler Traffic Violations Using Dashcam Videos
- URL: http://arxiv.org/abs/2503.00428v1
- Date: Sat, 01 Mar 2025 10:10:06 GMT
- Title: DashCop: Automated E-ticket Generation for Two-Wheeler Traffic Violations Using Dashcam Videos
- Authors: Deepti Rawat, Keshav Gupta, Aryamaan Basu Roy, Ravi Kiran Sarvadevabhatla,
- Abstract summary: We propose DashCop, an end-to-end system for automated E-ticket generation.<n>The system processes vehicle-mounted dashcam videos to detect two-wheeler traffic violations.<n>Our system demonstrates significant improvements in violation detection, validated through extensive evaluations.
- Score: 8.265943897085835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motorized two-wheelers are a prevalent and economical means of transportation, particularly in the Asia-Pacific region. However, hazardous driving practices such as triple riding and non-compliance with helmet regulations contribute significantly to accident rates. Addressing these violations through automated enforcement mechanisms can enhance traffic safety. In this paper, we propose DashCop, an end-to-end system for automated E-ticket generation. The system processes vehicle-mounted dashcam videos to detect two-wheeler traffic violations. Our contributions include: (1) a novel Segmentation and Cross-Association (SAC) module to accurately associate riders with their motorcycles, (2) a robust cross-association-based tracking algorithm optimized for the simultaneous presence of riders and motorcycles, and (3) the RideSafe-400 dataset, a comprehensive annotated dashcam video dataset for triple riding and helmet rule violations. Our system demonstrates significant improvements in violation detection, validated through extensive evaluations on the RideSafe-400 dataset.
Related papers
- Towards Intelligent Transportation with Pedestrians and Vehicles In-the-Loop: A Surveillance Video-Assisted Federated Digital Twin Framework [62.47416496137193]
We propose a surveillance video assisted federated digital twin (SV-FDT) framework to empower ITSs with pedestrians and vehicles in-the-loop.
The architecture consists of three layers: (i) the end layer, which collects traffic surveillance videos from multiple sources; (ii) the edge layer, responsible for semantic segmentation-based visual understanding, twin agent-based interaction modeling, and local digital twin system (LDTS) creation in local regions; and (iii) the cloud layer, which integrates LDTSs across different regions to construct a global DT model in realtime.
arXiv Detail & Related papers (2025-03-06T07:36:06Z) - Watch Out E-scooter Coming Through: Multimodal Sensing of Mixed Traffic Use and Conflicts Through Riders Ego-centric Views [27.40067154809732]
This study investigated the rider behaviour through a naturalistic study with 23 participants equipped with a bike computer.<n>We analysed gaze movements, speed, and video feeds across three transport infrastructure types: a pedestrian-shared path, a cycle lane and a roadway.<n>Our findings reveal unique challenges e-scooter riders face, including difficulty keeping up with cyclists and motor vehicles.
arXiv Detail & Related papers (2025-02-24T00:16:18Z) - The 8th AI City Challenge [57.25825945041515]
The 2024 edition featured five tracks, attracting unprecedented interest from 726 teams in 47 countries and regions.
The challenge utilized two leaderboards to showcase methods, with participants setting new benchmarks.
arXiv Detail & Related papers (2024-04-15T03:12:17Z) - Next-gen traffic surveillance: AI-assisted mobile traffic violation
detection system [0.0]
Approximately 1,3 million people lose their lives daily due to traffic accidents.
The integration of Artificial Intelligence algorithms, leveraging machine learning and computer vision, has facilitated the development of precise traffic rule enforcement.
This paper illustrates how computer vision and machine learning enable the creation of robust algorithms for detecting various traffic violations.
arXiv Detail & Related papers (2023-11-24T22:42:47Z) - Infrastructure-based End-to-End Learning and Prevention of Driver
Failure [68.0478623315416]
FailureNet is a recurrent neural network trained end-to-end on trajectories of both nominal and reckless drivers in a scaled miniature city.
It can accurately identify control failures, upstream perception errors, and speeding drivers, distinguishing them from nominal driving.
Compared to speed or frequency-based predictors, FailureNet's recurrent neural network structure provides improved predictive power, yielding upwards of 84% accuracy when deployed on hardware.
arXiv Detail & Related papers (2023-03-21T22:55:51Z) - CycleSense: Detecting Near Miss Incidents in Bicycle Traffic from Mobile
Motion Sensors [3.5127092215732176]
In cities worldwide, cars cause health and traffic problems which could be partly mitigated through an increased modal share of bicycles.
Many people, however, avoid cycling due to a lack of perceived safety.
For city planners, addressing this is hard as they lack insights into where cyclists feel safe and where they do not.
arXiv Detail & Related papers (2022-04-21T21:43:23Z) - Detecting, Tracking and Counting Motorcycle Rider Traffic Violations on
Unconstrained Roads [27.351236436457445]
In many Asian countries with unconstrained road traffic conditions, driving violations such as not wearing helmets and triple-riding are a significant source of fatalities involving motorcycles.
We propose an approach for detecting, tracking, and counting motorcycle riding violations in videos taken from a vehicle-mounted dashboard camera.
arXiv Detail & Related papers (2022-04-18T15:17:40Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Emergent Road Rules In Multi-Agent Driving Environments [84.82583370858391]
We analyze what ingredients in driving environments cause the emergence of road rules.
We find that two crucial factors are noisy perception and agents' spatial density.
Our results add empirical support for the social road rules that countries worldwide have agreed on for safe, efficient driving.
arXiv Detail & Related papers (2020-11-21T09:43:50Z) - Driver Intention Anticipation Based on In-Cabin and Driving Scene
Monitoring [52.557003792696484]
We present a framework for the detection of the drivers' intention based on both in-cabin and traffic scene videos.
Our framework achieves a prediction with the accuracy of 83.98% and F1-score of 84.3%.
arXiv Detail & Related papers (2020-06-20T11:56:32Z) - iTV: Inferring Traffic Violation-Prone Locations with Vehicle
Trajectories and Road Environment Data [12.715237421592624]
We propose a framework to infer traffic violation-prone locations in cities based on the largetemporal-scale vehicle trajectory data and environment data.
To evaluate the effectiveness of the proposed method, we conduct extensive studies on large-scale, real-world vehicle trajectories collected from two Chinese cities.
arXiv Detail & Related papers (2020-05-09T08:52:43Z) - Learning by Cheating [72.9701333689606]
We show that this challenging learning problem can be simplified by decomposing it into two stages.
We use the presented approach to train a vision-based autonomous driving system that substantially outperforms the state of the art.
Our approach achieves, for the first time, 100% success rate on all tasks in the original CARLA benchmark, sets a new record on the NoCrash benchmark, and reduces the frequency of infractions by an order of magnitude compared to the prior state of the art.
arXiv Detail & Related papers (2019-12-27T18:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.