論文の概要: Graph Neighborhood Attentive Pooling
- arxiv url: http://arxiv.org/abs/2001.10394v2
- Date: Wed, 29 Jan 2020 09:20:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-06 02:26:34.986011
- Title: Graph Neighborhood Attentive Pooling
- Title(参考訳): グラフ近傍の注意プール
- Authors: Zekarias T. Kefato, Sarunas Girdzijauskas
- Abstract要約: ネットワーク表現学習(NRL)は,高次元およびスパースグラフの低次元ベクトル表現を学習するための強力な手法である。
本稿では,ノード近傍の異なる部分への入場を注意型プールネットワークを用いて学習するGAPと呼ばれる新しい文脈依存アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.5493410630077189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Network representation learning (NRL) is a powerful technique for learning
low-dimensional vector representation of high-dimensional and sparse graphs.
Most studies explore the structure and metadata associated with the graph using
random walks and employ an unsupervised or semi-supervised learning schemes.
Learning in these methods is context-free, because only a single representation
per node is learned. Recently studies have argued on the sufficiency of a
single representation and proposed a context-sensitive approach that proved to
be highly effective in applications such as link prediction and ranking.
However, most of these methods rely on additional textual features that
require RNNs or CNNs to capture high-level features or rely on a community
detection algorithm to identify multiple contexts of a node.
In this study, without requiring additional features nor a community
detection algorithm, we propose a novel context-sensitive algorithm called GAP
that learns to attend on different parts of a node's neighborhood using
attentive pooling networks. We show the efficacy of GAP using three real-world
datasets on link prediction and node clustering tasks and compare it against 10
popular and state-of-the-art (SOTA) baselines. GAP consistently outperforms
them and achieves up to ~9% and ~20% gain over the best performing methods on
link prediction and clustering tasks, respectively.
- Abstract(参考訳): ネットワーク表現学習(NRL)は,高次元およびスパースグラフの低次元ベクトル表現を学習するための強力な手法である。
ほとんどの研究では、ランダムウォークを用いてグラフの構造とメタデータを調べ、教師なしまたは半教師なしの学習スキームを用いる。
これらの方法での学習は、ノードごとの1つの表現のみが学習されるため、文脈自由である。
近年、単一表現の十分性について論じられ、リンク予測やランキングなどのアプリケーションで非常に効果的であることが証明された文脈依存的アプローチが提案されている。
しかし、これらの手法の多くは、高レベルな特徴をキャプチャするためにRNNやCNNを必要とする追加のテキスト機能や、ノードの複数のコンテキストを特定するためにコミュニティ検出アルゴリズムに依存している。
本研究では,追加機能やコミュニティ検出アルゴリズムを必要とせず,注意プールネットワークを用いてノード近傍の異なる部分への出席を学習するgapと呼ばれる新しいコンテキストセンシティブアルゴリズムを提案する。
リンク予測とノードクラスタリングタスクにおける3つの実世界のデータセットを用いたGAPの有効性を示し、それを10の人気のSOTAベースラインと比較する。
GAPはそれらを一貫して上回り、リンク予測とクラスタリングタスクにおける最高のメソッドよりも最大9%、最大20%向上する。
関連論文リスト
- Redundancy-Free Self-Supervised Relational Learning for Graph Clustering [13.176413653235311]
冗長フリーグラフクラスタリング(R$2$FGC)という,自己教師付き深層グラフクラスタリング手法を提案する。
オートエンコーダとグラフオートエンコーダに基づいて,グローバルビューとローカルビューの両方から属性レベルと構造レベルの関係情報を抽出する。
この実験は,R$2$FGCが最先端のベースラインよりも優れていることを示すために,広く使用されているベンチマークデータセット上で実施されている。
論文 参考訳(メタデータ) (2023-09-09T06:18:50Z) - Mitigating Semantic Confusion from Hostile Neighborhood for Graph Active
Learning [38.5372139056485]
Graph Active Learning(GAL)は、グラフニューラルネットワーク(GNN)のパフォーマンスを最大化するためのアノテーションのための、グラフで最も情報に富むノードを見つけることを目的としている。
Gal戦略は、特にグラフがノイズの多い場合、選択したトレーニングセットに意味的な混乱をもたらす可能性がある。
本稿では,意味的混乱を緩和するために,グラフのためのセマンティック・アウェア・アクティブ・ラーニング・フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-17T07:06:54Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
テキストグラフ学習におけるフラストレーションに富んだアプローチであるSimTeGを提案する。
まず、下流タスクで予め訓練されたLM上で、教師付きパラメータ効率の微調整(PEFT)を行う。
次に、微調整されたLMの最後の隠れ状態を用いてノード埋め込みを生成する。
論文 参考訳(メタデータ) (2023-08-03T07:00:04Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
数値ノード特徴とグラフ構造を入力とするグラフニューラルネットワーク(GNN)は,グラフデータを用いた各種教師付き学習タスクにおいて,優れた性能を示した。
IID(non-graph)データをGNNに簡単に組み込むことはできない。
本稿では、グラフ認識の伝播をIDデータに意図した任意のモデルで融合するロバストな積み重ねフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-16T22:46:33Z) - Inferential SIR-GN: Scalable Graph Representation Learning [0.4699313647907615]
グラフ表現学習法は、ネットワーク内のノードの数値ベクトル表現を生成する。
本研究では,ランダムグラフ上で事前学習されたモデルであるInferential SIR-GNを提案し,ノード表現を高速に計算する。
このモデルではノードの構造的役割情報を捉えることができ、ノードやグラフの分類タスクにおいて、目に見えないネットワーク上で優れた性能を示すことができる。
論文 参考訳(メタデータ) (2021-11-08T20:56:37Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
今回提案するグラフネットワーク層であるNode2Seqは,隣接ノードの重みを明示的に調整可能なノード埋め込みを学習する。
対象ノードに対して,当手法は注意メカニズムを介して隣接ノードをソートし,さらに1D畳み込みニューラルネットワーク(CNN)を用いて情報集約のための明示的な重み付けを行う。
また, 特徴学習のための非局所的情報を, 注意スコアに基づいて適応的に組み込むことを提案する。
論文 参考訳(メタデータ) (2021-01-06T03:05:37Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
グラフ埋め込みは、高次元および非ユークリッド特徴空間でデータ構造を変換しエンコードする方法である。
CensNetは一般的なグラフ埋め込みフレームワークで、ノードとエッジの両方を潜在機能空間に埋め込む。
提案手法は,4つのグラフ学習課題における最先端のパフォーマンスを達成または一致させる。
論文 参考訳(メタデータ) (2020-10-25T22:39:31Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z) - Graph Prototypical Networks for Few-shot Learning on Attributed Networks [72.31180045017835]
グラフメタ学習フレームワーク - Graph Prototypeal Networks (GPN) を提案する。
GPNは、属性付きネットワーク上でテキストミータ学習を行い、ターゲット分類タスクを扱うための高度に一般化可能なモデルを導出する。
論文 参考訳(メタデータ) (2020-06-23T04:13:23Z) - Gossip and Attend: Context-Sensitive Graph Representation Learning [0.5493410630077189]
グラフ表現学習(GRL)は、高次元かつしばしばスパースグラフの低次元ベクトル表現を学習する強力な手法である。
本稿では,Gossip通信にインスパイアされた文脈依存型アルゴリズムGOATと,グラフの構造上の相互注意機構を提案する。
論文 参考訳(メタデータ) (2020-03-30T18:23:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。