論文の概要: In-depth Analysis of Graph-based RAG in a Unified Framework
- arxiv url: http://arxiv.org/abs/2503.04338v1
- Date: Thu, 06 Mar 2025 11:34:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 16:00:31.891218
- Title: In-depth Analysis of Graph-based RAG in a Unified Framework
- Title(参考訳): 統一フレームワークにおけるグラフベースRAGの深部解析
- Authors: Yingli Zhou, Yaodong Su, Youran Sun, Shu Wang, Taotao Wang, Runyuan He, Yongwei Zhang, Sicong Liang, Xilin Liu, Yuchi Ma, Yixiang Fang,
- Abstract要約: グラフベースのRetrieval-Augmented Generation (RAG)は、外部知識を大規模言語モデルに統合するのに有効であることが証明されている。
まず、高レベルの観点から全てのグラフベースのRAGメソッドを統合する統一フレームワークを要約する。
次に, 探索探索(QA)データセットに対して, 代表グラフに基づくRAG手法を広範囲に比較する。
- 参考スコア(独自算出の注目度): 17.941941997783267
- License:
- Abstract: Graph-based Retrieval-Augmented Generation (RAG) has proven effective in integrating external knowledge into large language models (LLMs), improving their factual accuracy, adaptability, interpretability, and trustworthiness. A number of graph-based RAG methods have been proposed in the literature. However, these methods have not been systematically and comprehensively compared under the same experimental settings. In this paper, we first summarize a unified framework to incorporate all graph-based RAG methods from a high-level perspective. We then extensively compare representative graph-based RAG methods over a range of questing-answering (QA) datasets -- from specific questions to abstract questions -- and examine the effectiveness of all methods, providing a thorough analysis of graph-based RAG approaches. As a byproduct of our experimental analysis, we are also able to identify new variants of the graph-based RAG methods over specific QA and abstract QA tasks respectively, by combining existing techniques, which outperform the state-of-the-art methods. Finally, based on these findings, we offer promising research opportunities. We believe that a deeper understanding of the behavior of existing methods can provide new valuable insights for future research.
- Abstract(参考訳): グラフベースのRetrieval-Augmented Generation (RAG)は、外部知識を大きな言語モデル(LLM)に統合し、その事実の正確性、適応性、解釈可能性、信頼性を向上させるのに有効である。
この論文では、グラフベースのRAG法がいくつか提案されている。
しかし、これらの手法は、同じ実験条件下で体系的にも包括的にも比較されていない。
本稿では、まず、グラフベースのRAGメソッドを高レベルの観点から組み込む統一的なフレームワークを要約する。
次に、特定の質問から抽象的な質問まで、様々なQAデータセットのグラフベースのRAG手法を広範囲に比較し、すべての手法の有効性を調べ、グラフベースのRAGアプローチを徹底的に分析する。
実験分析の副産物として,グラフベースRAG手法の新たな変種を,それぞれ特定のQAタスクと抽象的なQAタスクに対して同定することができる。
最後に,これらの知見に基づき,有望な研究機会を提供する。
既存の手法の振る舞いをより深く理解することは、今後の研究に新たな価値ある洞察をもたらすことができると信じている。
関連論文リスト
- ArchRAG: Attributed Community-based Hierarchical Retrieval-Augmented Generation [16.204046295248546]
Retrieval-Augmented Generation (RAG) は、外部知識を大規模言語モデルに統合するのに有効であることが証明されている。
我々は、Attributed Community-based Hierarchical RAG (ArchRAG)と呼ばれる新しいグラフベースのRAGアプローチを導入する。
属性付きコミュニティのための新しい階層型インデックス構造を構築し,効果的なオンライン検索手法を開発した。
論文 参考訳(メタデータ) (2025-02-14T03:28:36Z) - Out-of-Distribution Detection on Graphs: A Survey [58.47395497985277]
グラフアウト・オブ・ディストリビューション(GOOD)検出は、トレーニング中に見られる分布から逸脱するグラフデータを特定することに焦点を当てる。
既存の手法を,拡張ベース,再構築ベース,情報伝達ベース,分類ベースという4つのタイプに分類する。
本稿では,グラフデータによるユニークな課題を浮き彫りにして,実践的応用と理論的基礎について論じる。
論文 参考訳(メタデータ) (2025-02-12T04:07:12Z) - CG-RAG: Research Question Answering by Citation Graph Retrieval-Augmented LLMs [9.718354494802002]
CG-RAG(Contextualized Graph Retrieval-Augmented Generation)は、グラフ構造に疎密な検索信号を統合する新しいフレームワークである。
まず、引用グラフの文脈グラフ表現を提案し、文書内および文書間の明示的および暗黙的な接続を効果的にキャプチャする。
次にLexical-Semantic Graph Retrieval(LeSeGR)を提案する。
第3に,検索したグラフ構造化情報を利用した文脈認識生成手法を提案する。
論文 参考訳(メタデータ) (2025-01-25T04:18:08Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
本稿では,o1-like RAGモデルを学習し,最終回答を生成する前に段階的に関連情報を抽出・推論する手法を提案する。
提案手法であるCoRAGは,進化状態に基づいて動的にクエリを再構成する。
論文 参考訳(メタデータ) (2025-01-24T09:12:52Z) - Deep Graph Anomaly Detection: A Survey and New Perspectives [86.84201183954016]
グラフ異常検出(GAD)は、異常なグラフインスタンス(ノード、エッジ、サブグラフ、グラフ)を特定することを目的とする。
ディープラーニングアプローチ、特にグラフニューラルネットワーク(GNN)は、GADにとって有望なパラダイムとして現れています。
論文 参考訳(メタデータ) (2024-09-16T03:05:11Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に焦点をあてて,完全性,幻覚,不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - A Study on the Implementation Method of an Agent-Based Advanced RAG System Using Graph [0.0]
本研究では、グラフ技術に基づく高度なRAGシステムを実装し、高品質な生成AIサービスを開発する。
検索した情報の信頼性を評価するためにLangGraphを使用し、さまざまなデータを合成して、より正確で拡張されたレスポンスを生成する。
論文 参考訳(メタデータ) (2024-07-29T13:26:43Z) - Unifying Unsupervised Graph-Level Anomaly Detection and Out-of-Distribution Detection: A Benchmark [73.58840254552656]
近年,非教師付きグラフレベルの異常検出(GLAD)と教師なしグラフレベルのアウト・オブ・ディストリビューション(OOD)検出が注目されている。
教師なしグラフレベルのOODと異常検出のための統一ベンチマーク(我々の方法)を提案する。
我々のベンチマークでは、4つの実用的な異常とOOD検出シナリオにまたがる35のデータセットを網羅している。
我々は,既存手法の有効性,一般化性,堅牢性,効率性について多次元解析を行った。
論文 参考訳(メタデータ) (2024-06-21T04:07:43Z) - Retrieval-Augmented Generation for AI-Generated Content: A Survey [38.50754568320154]
このような課題に対処するためのパラダイムとして,レトリーバル拡張生成(RAG)が登場している。
RAGは情報検索プロセスを導入し、利用可能なデータストアから関連オブジェクトを検索することで生成プロセスを強化する。
本稿では,RAG手法をAIGCシナリオに統合する既存の取り組みを概観的にレビューする。
論文 参考訳(メタデータ) (2024-02-29T18:59:01Z) - Exploiting Abstract Meaning Representation for Open-Domain Question
Answering [18.027908933572203]
抽象的意味表現(AMR)グラフを用いて、複雑な意味情報を理解するモデルを支援する。
また,Natural Questions (NQ) と TriviaQA (TQ) の結果から,GST法が性能を著しく向上することを示した。
論文 参考訳(メタデータ) (2023-05-26T16:00:16Z) - Graph Learning based Recommender Systems: A Review [111.43249652335555]
グラフ学習ベースのレコメンダーシステム(GLRS)は、高度なグラフ学習アプローチを使用して、ユーザーの好みと意図、および推奨項目の特性をモデル化します。
本稿では,グラフに基づく表現から重要な知識を抽出し,レコメンデーションの正確性,信頼性,説明性を向上する方法について論じることにより,GLRSの体系的なレビューを行う。
論文 参考訳(メタデータ) (2021-05-13T14:50:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。