論文の概要: Heatwave increases nighttime light intensity in hyperdense cities of the Global South: A double machine learning study
- arxiv url: http://arxiv.org/abs/2503.00557v1
- Date: Sat, 01 Mar 2025 16:52:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:25:44.034978
- Title: Heatwave increases nighttime light intensity in hyperdense cities of the Global South: A double machine learning study
- Title(参考訳): グローバリゼーション・サウスの高密度都市における熱波の夜間光強度増加 : 二重機械学習による研究
- Authors: Ramit Debnath, Taran Chandel, Fengyuan Han, Ronita Bardhan,
- Abstract要約: 気候変動や急速な都市化によって強まる熱波は、都市システムに重大な脅威をもたらす。
本研究では,グローバルサウスの4大都市における熱波と夜間光(NTL)放射率の関係について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Heatwaves, intensified by climate change and rapid urbanisation, pose significant threats to urban systems, particularly in the Global South, where adaptive capacity is constrained. This study investigates the relationship between heatwaves and nighttime light (NTL) radiance, a proxy of nighttime economic activity, in four hyperdense cities: Delhi, Guangzhou, Cairo, and Sao Paulo. We hypothesised that heatwaves increase nighttime activity. Using a double machine learning (DML) framework, we analysed data from 2013 to 2019 to quantify the impact of heatwaves on NTL while controlling for local climatic confounders. Results revealed a statistically significant increase in NTL intensity during heatwaves, with Cairo, Delhi, and Guangzhou showing elevated NTL on the third day, while S\~ao Paulo exhibits a delayed response on the fourth day. Sensitivity analyses confirmed the robustness of these findings, indicating that prolonged heat stress prompts urban populations to shift activities to night. Heterogeneous responses across cities highlight the possible influence of urban morphology and adaptive capacity to heatwave impacts. Our findings provide a foundation for policymakers to develop data-driven heat adaptation strategies, ensuring that cities remain liveable and economically resilient in an increasingly warming world.
- Abstract(参考訳): 気候変動や急速な都市化によって強まる熱波は、都市システム、特に適応能力が制限されているグローバル・サウスに重大な脅威をもたらす。
本研究では,デリー,広州,カイロ,サンパウロの4都市において,夜間の経済活動の指標である熱波と夜間光(NTL)放射率の関係について検討した。
我々は、熱波が夜間活動を増加させると仮定した。
ダブル機械学習(DML)フレームワークを使用して、2013年から2019年にかけてのデータを分析し、NTLに対する熱波の影響を定量化し、局所的な気候的共同創設者を制御しました。
その結果,カイロ,デリー,広州は3日目にNTLの上昇を示し,サンパウロは4日目に遅延反応を示した。
感度分析によりこれらの知見の堅牢性が確認され、長引く熱ストレスが都市住民を夜間に移動させることが示唆された。
都市全体の不均一な反応は、都市形態と熱波の影響への適応能力の影響を浮き彫りにする。
本研究は, 都市が温暖化社会において活力と経済的回復力を維持するために, データ駆動型熱適応戦略を立案する基盤を提供するものである。
関連論文リスト
- Adopting Explainable-AI to investigate the impact of urban morphology design on energy and environmental performance in dry-arid climates [0.0]
本研究では,都市建築エネルギーモデリング(UBEM)と機械学習(ML)と説明可能なAI技術を組み合わせた都市形態評価手法を提案する。
テヘランの密集した都市景観をケーススタディとして、この研究は30の形態パラメータが主要なエネルギー指標に与える影響を評価し、ランク付けする。
その結果、建築形態、窓と壁の比率、商業比率がエネルギー効率に影響を与える最も重要なパラメータであることが判明した。
論文 参考訳(メタデータ) (2024-12-13T09:19:49Z) - FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
本研究では,FengWuグローバル気象予報モデルに基づくFengWu-Weather to Subseasonal (FengWu-W2S)を提案する。
我々は,FengWu-W2Sが大気環境を3~6週間先まで確実に予測し,マデン・ジュリア振動 (MJO) や北大西洋振動 (NAO) などの地球表面温度, 降水量, 地磁気高度, 季節内信号の予測能力を向上させることを実証した。
日時から季節時の予測誤差成長に関するアブレーション実験
論文 参考訳(メタデータ) (2024-11-15T13:44:37Z) - Tackling extreme urban heat: a machine learning approach to assess the impacts of climate change and the efficacy of climate adaptation strategies in urban microclimates [0.0]
都市熱に集中した高温は、熱による死と病気のリスクを増大させる可能性がある。
本稿では,都市温度推定の精度を向上させるオープンソース,計算効率のよい機械学習手法を提案する。
冷却需要は、世紀半ばまでに大幅に増加する可能性が高いが、高アルベド表面の技術により、この増加を50%以上減少させる可能性がある。
論文 参考訳(メタデータ) (2024-11-08T20:29:11Z) - A Machine Learning Approach for the Efficient Estimation of Ground-Level Air Temperature in Urban Areas [6.7236795813629]
都市で発生する都市ヒートアイランド(UHI)現象は、その熱応力を増大させ、より持続可能な都市を実現するための障害の1つである。
本研究では,都市域の空間的・気象的変数と街路レベルの空気温度を関連付けるために,イメージ・ツー・イメージ・ディープ・ニューラル・ネットワーク(DNN)の有用性を検討する。
街路レベルでの空気温度は、特定のユースケースに対して空間的にも時間的にも推定され、既存のよく確立された数値モデルと比較される。
論文 参考訳(メタデータ) (2024-11-05T15:05:23Z) - Physics-based deep learning reveals rising heating demand heightens air pollution in Norwegian cities [0.9187407509784052]
政策立案者は、交流を無視して、大気の質や気候変動を孤立して分析することが多い。
本研究は,K平均クラスタリング,階層クラスタリング,ランダムフォレスト技術と回帰モデルを比較して,特定の気候要因が大気質に及ぼす影響を考察する。
大気汚染予測のための物理ベースディープラーニング(PBDL)とLong Short-Term Memory(LSTM)を用いる。
論文 参考訳(メタデータ) (2024-05-07T23:43:46Z) - Climate-sensitive Urban Planning through Optimization of Tree Placements [55.11389516857789]
気候変動は、熱波を含む多くの極端な気象事象の強度と頻度を増している。
最も有望な戦略の1つは、街路樹の恩恵を利用して歩行者レベルの環境を冷やすことである。
物理シミュレーションでは、樹木の放射的および熱的影響が人間の熱的快適性に与える影響を推定できるが、高い計算コストが生じる。
我々は,屋外の熱的快適さの駆動因子である点平均放射温度を,様々な時間スケールでシミュレーションするためにニューラルネットワークを用いた。
論文 参考訳(メタデータ) (2023-10-09T13:07:23Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Urban form and COVID-19 cases and deaths in Greater London: an urban
morphometric approach [63.29165619502806]
新型コロナウイルスのパンデミックは、都市密度に関してかなりの議論を巻き起こした。
これは19世紀中頃のイングランドで、公衆衛生と都市計画の分野が出現して始まった古い議論である。
都市形態を個々の建物レベルで記述し、その後、公的な近隣住民の情報を集約する。
論文 参考訳(メタデータ) (2022-10-16T10:01:10Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
ワイルドファイアはアメリカ合衆国西海岸で頻繁に起こる最大の災害の1つである。
カリフォルニアの山火事リスクが高い地域を解析・評価するための静的・動的予測モデルを提案します。
論文 参考訳(メタデータ) (2021-03-14T17:56:17Z) - Urban Heat Islands: Beating the Heat with Multi-Modal Spatial Analysis [0.3121997724420106]
過度の熱ストレスは、個人から世界まで、様々なレベルの問題を引き起こす。
世界レベルでは、UHIは地球温暖化に寄与し、環境に悪影響を及ぼす可能性がある。
本稿では, 統計モデルを用いて, UHIが都市の都市形態特性にどのように影響されているかを明らかにする枠組みを提案する。
論文 参考訳(メタデータ) (2020-12-05T15:18:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。