Automated Scoring of Clinical Patient Notes using Advanced NLP and
Pseudo Labeling
- URL: http://arxiv.org/abs/2401.12994v1
- Date: Thu, 18 Jan 2024 05:17:18 GMT
- Title: Automated Scoring of Clinical Patient Notes using Advanced NLP and
Pseudo Labeling
- Authors: Jingyu Xu, Yifeng Jiang, Bin Yuan, Shulin Li, Tianbo Song
- Abstract summary: This research introduces an approach leveraging state-of-the-art Natural Language Processing (NLP) techniques.
Our methodology enhances efficiency and effectiveness, significantly reducing training time without compromising performance.
- Score: 2.711804338865226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clinical patient notes are critical for documenting patient interactions,
diagnoses, and treatment plans in medical practice. Ensuring accurate
evaluation of these notes is essential for medical education and certification.
However, manual evaluation is complex and time-consuming, often resulting in
variability and resource-intensive assessments. To tackle these challenges,
this research introduces an approach leveraging state-of-the-art Natural
Language Processing (NLP) techniques, specifically Masked Language Modeling
(MLM) pretraining, and pseudo labeling. Our methodology enhances efficiency and
effectiveness, significantly reducing training time without compromising
performance. Experimental results showcase improved model performance,
indicating a potential transformation in clinical note assessment.
Related papers
- Improving Clinical Note Generation from Complex Doctor-Patient Conversation [20.2157016701399]
We present three key contributions to the field of clinical note generation using large language models (LLMs)
First, we introduce CliniKnote, a dataset consisting of 1,200 complex doctor-patient conversations paired with their full clinical notes.
Second, we propose K-SOAP, which enhances traditional SOAPcitepodder20soap (Subjective, Objective, Assessment, and Plan) notes by adding a keyword section at the top, allowing for quick identification of essential information.
Third, we develop an automatic pipeline to generate K-SOAP notes from doctor-patient conversations and benchmark various modern LLMs using various
arXiv Detail & Related papers (2024-08-26T18:39:31Z) - Enhancing Clinical Efficiency through LLM: Discharge Note Generation for Cardiac Patients [1.379398224469229]
This study addresses inefficiencies and inaccuracies in creating discharge notes manually, particularly for cardiac patients.
Our research evaluates the capability of large language model (LLM) to enhance the documentation process.
Among the various models assessed, Mistral-7B distinguished itself by accurately generating discharge notes.
arXiv Detail & Related papers (2024-04-08T01:55:28Z) - Towards Automatic Evaluation for LLMs' Clinical Capabilities: Metric, Data, and Algorithm [15.627870862369784]
Large language models (LLMs) are gaining increasing interests to improve clinical efficiency for medical diagnosis.
We propose an automatic evaluation paradigm tailored to assess the LLMs' capabilities in delivering clinical services.
arXiv Detail & Related papers (2024-03-25T06:17:54Z) - Investigating Alternative Feature Extraction Pipelines For Clinical Note
Phenotyping [0.0]
Using computational systems for the extraction of medical attributes offers many applications.
BERT-based models can be used to transform clinical notes into a series of representations.
We propose an alternative pipeline utilizing ScispaCyNeumann for extraction of common diseases.
arXiv Detail & Related papers (2023-10-05T02:51:51Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Utilizing ChatGPT to Enhance Clinical Trial Enrollment [2.3551878971309947]
We propose an automated approach that leverages ChatGPT, a large language model, to extract patient-related information from unstructured clinical notes.
Our empirical evaluation, conducted on two benchmark retrieval collections, shows improved retrieval performance compared to existing approaches.
These findings highlight the potential use of ChatGPT to enhance clinical trial enrollment while ensuring the quality of medical service and minimizing direct risks to patients.
arXiv Detail & Related papers (2023-06-03T10:54:23Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
We introduce a model-agnostic pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization.
Experimental findings indicate that our method not only bolsters performance but also effectively curbs variance for various language models.
arXiv Detail & Related papers (2023-03-23T04:47:46Z) - Automated Fidelity Assessment for Strategy Training in Inpatient
Rehabilitation using Natural Language Processing [53.096237570992294]
Strategy training is a rehabilitation approach that teaches skills to reduce disability among those with cognitive impairments following a stroke.
Standardized fidelity assessment is used to measure adherence to treatment principles.
We developed a rule-based NLP algorithm, a long-short term memory (LSTM) model, and a bidirectional encoder representation from transformers (BERT) model for this task.
arXiv Detail & Related papers (2022-09-14T15:33:30Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
We construct a new dataset named MedLane to support the development and evaluation of automated clinical language simplification approaches.
We propose a new model called DECLARE that follows the human annotation procedure and achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-12-04T06:09:02Z) - A Review of Computational Approaches for Evaluation of Rehabilitation
Exercises [58.720142291102135]
This paper reviews computational approaches for evaluating patient performance in rehabilitation programs using motion capture systems.
The reviewed computational methods for exercise evaluation are grouped into three main categories: discrete movement score, rule-based, and template-based approaches.
arXiv Detail & Related papers (2020-02-29T22:18:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.