Integration of a GaAs-based nanomechanical phase shifter with quantum-dot single-photon sources
- URL: http://arxiv.org/abs/2503.01012v1
- Date: Sun, 02 Mar 2025 20:40:16 GMT
- Title: Integration of a GaAs-based nanomechanical phase shifter with quantum-dot single-photon sources
- Authors: Celeste Qvotrup, Ying Wang, Marcus Albrechtsen, Rodrigo A. Thomas, Zhe Liu, Sven Scholz, Arne Ludwig, Leonardo Midolo,
- Abstract summary: We demonstrate a small-footprint electromechanical phase shifter with a compact active length of $10:mu textm$ fabricated on a suspended GaAs membrane.<n>The phase shifter is based on a slot-mode waveguide, whose slot width can be controlled by electrostatic forces, enabling a large effective refractive index change.<n>We observe up to 3$pi$ phase modulation with 10.6 textV applied bias, and a figure of merit $V_piL = 5.7cdot 10-3 textVcdot text
- Score: 5.129407305640757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate a small-footprint electromechanical phase shifter with a compact active length of $10\:\mu \text{m}$ fabricated on a suspended GaAs membrane, offering versatile integration with quantum-dot single-photon sources. The phase shifter is based on a slot-mode waveguide, whose slot width can be controlled by electrostatic forces, enabling a large effective refractive index change $\Delta n_\text{eff} > 0.1$. We observe up to 3$\pi$ phase modulation with 10.6 \text{V} applied bias, and a figure of merit $V_{\pi}L = 5.7\cdot 10^{-3} \text{V}\cdot \text{cm}$. Integration with a Mach-Zehnder interferometer (MZI) further allows routing of single photons with up to 24 \text{dB} extinction ratio at cryogenic temperatures. This device enables advanced manipulation of quantum emitters and the realization of reconfigurable quantum photonic integrated circuits.
Related papers
- All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - High-throughput quantum photonic devices emitting indistinguishable photons in the telecom C-band [28.279056210896716]
Single indistinguishable photons at telecom C-band wavelengths are essential for quantum networks and the future quantum internet.
We demonstrate the high- throughput fabrication of quantum-photonic integrated devices operating at C-band wavelengths based on epitaxial semiconductor quantum dots.
Further improvements in yield and coherence properties will pave the way for implementing single-photon non-linear devices and advanced quantum networks at telecom wavelengths.
arXiv Detail & Related papers (2023-04-05T15:39:22Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Large Single-Phonon Optomechanical Coupling between Quantum Dots and
Tightly Confined Surface Acoustic Waves in the Quantum Regime [1.7039969990048311]
Small acoustic cavities with large zero-point motion are required for high efficiencies.
We experimentally establish the feasibility of this platform through electro- and opto-mechanical characterization.
We show conversion between microwave phonons and optical photons with sub-natural linewidths.
arXiv Detail & Related papers (2022-05-03T02:53:01Z) - Picosecond Pulsed Squeezing in Thin-Film Lithium Niobate Strip-Loaded
Waveguides at Telecommunication Wavelengths [52.77024349608834]
We show quadrature squeezing of picosecond pulses in a thin-film lithium niobate strip-loaded waveguide.
This work highlights the potential of the strip-loaded waveguide platform for broadband squeezing applications.
arXiv Detail & Related papers (2022-04-12T10:42:19Z) - Almost indistinguishable single photons via multiplexing cascaded
biphotons with cavity modulation and phase compensation [0.0]
We study the frequency entanglement of a biphoton generated from alkali metal atomic ensembles.
The purity of single photon reaches up to $0.999$ and the entanglement entropy $S$ of the biphoton reduces to $0.006$.
An extremely low frequency entanglement implies an almost indistinguishable single photon source.
arXiv Detail & Related papers (2022-01-26T15:34:26Z) - In-plane resonant excitation of quantum dots in a dual-mode
photonic-crystal waveguide with high $\beta$-factor [0.4588028371034407]
A high-quality quantum dot (QD) single-photon source is a key resource for quantum information processing.
We propose a novel dual-mode photonic-crystal waveguide that realizes direct in-plane resonant excitation of the embedded QDs.
The device has a compact footprint of $sim 50$ $mu$m$2$ and would enable stable and scalable excitation of multiple emitters for multi-photon quantum applications.
arXiv Detail & Related papers (2021-12-01T13:46:13Z) - Ultra-broadband quadrature squeezing with thin-film lithium niobate
nanophotonics [0.0]
In this letter, we demonstrate squeezed light generation with thin-film lithium niobate integrated photonics.
We measure 0.5-0.09dB quadrature squeezing(3 dB inferred on-chip)
This work represents a significant step towards the on-chip implementation of continuous-variable quantum information processing.
arXiv Detail & Related papers (2021-07-05T19:59:02Z) - InGaP quantum nanophotonic integrated circuits with 1.5%
nonlinearity-to-loss ratio [0.0]
We realize quantum nanophotonic integrated circuits in thin-film InGaP with a record-high ratio of $1.5%$ between the single-photon nonlinear coupling rate and cavity-photon loss rate.
Our work shows InGaP as a potentially transcending platform for quantum nonlinear optics and quantum information applications.
arXiv Detail & Related papers (2021-05-26T17:34:48Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.