All Roads Lead to Likelihood: The Value of Reinforcement Learning in Fine-Tuning
- URL: http://arxiv.org/abs/2503.01067v1
- Date: Mon, 03 Mar 2025 00:15:19 GMT
- Title: All Roads Lead to Likelihood: The Value of Reinforcement Learning in Fine-Tuning
- Authors: Gokul Swamy, Sanjiban Choudhury, Wen Sun, Zhiwei Steven Wu, J. Andrew Bagnell,
- Abstract summary: We show that the strongest results in foundation model fine-tuning (FT) are achieved via a relatively complex, two-stage training procedure.<n>One first trains a reward model (RM) on some dataset (e.g. human preferences) before using it to provide online feedback as part of a downstream reinforcement learning procedure.<n>We find the most support for the explanation that on problems with a generation-verification gap, the combination of the ease of learning the relatively simple RM from the preference data, and the ability of the downstream RL procedure to then filter its search space to the subset of policies that are optimal for
- Score: 40.93098780862429
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: From a first-principles perspective, it may seem odd that the strongest results in foundation model fine-tuning (FT) are achieved via a relatively complex, two-stage training procedure. Specifically, one first trains a reward model (RM) on some dataset (e.g. human preferences) before using it to provide online feedback as part of a downstream reinforcement learning (RL) procedure, rather than directly optimizing the policy parameters on the dataset via offline maximum likelihood estimation. In fact, from an information-theoretic perspective, we can only lose information via passing through a reward model and cannot create any new information via on-policy sampling. To explain this discrepancy, we scrutinize several hypotheses on the value of RL in FT through both theoretical and empirical lenses. Of the hypotheses considered, we find the most support for the explanation that on problems with a generation-verification gap, the combination of the ease of learning the relatively simple RM (verifier) from the preference data, coupled with the ability of the downstream RL procedure to then filter its search space to the subset of policies (generators) that are optimal for relatively simple verifiers is what leads to the superior performance of online FT.
Related papers
- Best Policy Learning from Trajectory Preference Feedback [15.799929216215672]
We address the problem of best policy identification in preference-based reinforcement learning (PbRL)<n>We propose Posterior Sampling for Preference Learning ($mathsfPSPL$), a novel algorithm inspired by Top-Two Thompson Sampling.<n>We provide the first theoretical guarantees for PbRL in this setting, establishing an upper bound on the simple Bayesian regret.
arXiv Detail & Related papers (2025-01-31T03:55:10Z) - Online Preference Alignment for Language Models via Count-based Exploration [46.46627519343809]
Reinforcement Learning from Human Feedback (RLHF) has shown great potential in fine-tuning Large Language Models (LLMs) to align with human preferences.<n>Existing methods perform preference alignment from a fixed dataset, which can be limited in data coverage.<n>Online RLHF is more desirable to empower the LLM to explore outside the support of the initial dataset by iteratively collecting the prompt-response pairs.
arXiv Detail & Related papers (2025-01-22T09:12:09Z) - Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF [80.32171988565999]
We introduce a unified approach to online and offline RLHF -- value-incentivized preference optimization (VPO)
VPO regularizes the maximum-likelihood estimate of the reward function with the corresponding value function.
Experiments on text summarization and dialog verify the practicality and effectiveness of VPO.
arXiv Detail & Related papers (2024-05-29T17:51:42Z) - Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data [102.16105233826917]
Learning from preference labels plays a crucial role in fine-tuning large language models.
There are several distinct approaches for preference fine-tuning, including supervised learning, on-policy reinforcement learning (RL), and contrastive learning.
arXiv Detail & Related papers (2024-04-22T17:20:18Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
Preference-based Reinforcement Learning (PbRL) is a paradigm in which an RL agent learns to optimize a task using pair-wise preference-based feedback over trajectories.
We propose a theoretical reward-agnostic PbRL framework where exploratory trajectories that enable accurate learning of hidden reward functions are acquired.
arXiv Detail & Related papers (2023-05-29T15:00:09Z) - Model-based Offline Imitation Learning with Non-expert Data [7.615595533111191]
We propose a scalable model-based offline imitation learning algorithmic framework that leverages datasets collected by both suboptimal and optimal policies.
We show that the proposed method textitalways outperforms Behavioral Cloning in the low data regime on simulated continuous control domains.
arXiv Detail & Related papers (2022-06-11T13:08:08Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
We propose falSe COrrelation REduction (SCORE) for offline RL, a practically effective and theoretically provable algorithm.
We empirically show that SCORE achieves the SoTA performance with 3.1x acceleration on various tasks in a standard benchmark (D4RL)
arXiv Detail & Related papers (2021-10-24T15:34:03Z) - Interpretable performance analysis towards offline reinforcement
learning: A dataset perspective [6.526790418943535]
We propose a two-fold taxonomy for existing offline RL algorithms.
We explore the correlation between the performance of different types of algorithms and the distribution of actions under states.
We create a benchmark platform on the Atari domain, entitled easy go (RLEG), at an estimated cost of more than 0.3 million dollars.
arXiv Detail & Related papers (2021-05-12T07:17:06Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.