Self-Adaptive Gamma Context-Aware SSM-based Model for Metal Defect Detection
- URL: http://arxiv.org/abs/2503.01234v2
- Date: Thu, 06 Mar 2025 07:11:32 GMT
- Title: Self-Adaptive Gamma Context-Aware SSM-based Model for Metal Defect Detection
- Authors: Sijin Sun, Ming Deng, Xingrui Yu, Xinyu Xi, Liangbin Zhao,
- Abstract summary: Metal defect detection is critical in industrial quality assurance.<n>Existing methods struggle with grayscale variations and complex defect states.<n>This paper proposes a Self-Adaptive Gamma Context-Aware SSM-based model.
- Score: 3.5792989228178897
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Metal defect detection is critical in industrial quality assurance, yet existing methods struggle with grayscale variations and complex defect states, limiting its robustness. To address these challenges, this paper proposes a Self-Adaptive Gamma Context-Aware SSM-based model(GCM-DET). This advanced detection framework integrating a Dynamic Gamma Correction (GC) module to enhance grayscale representation and optimize feature extraction for precise defect reconstruction. A State-Space Search Management (SSM) architecture captures robust multi-scale features, effectively handling defects of varying shapes and scales. Focal Loss is employed to mitigate class imbalance and refine detection accuracy. Additionally, the CD5-DET dataset is introduced, specifically designed for port container maintenance, featuring significant grayscale variations and intricate defect patterns. Experimental results demonstrate that the proposed model achieves substantial improvements, with mAP@0.5 gains of 27.6\%, 6.6\%, and 2.6\% on the CD5-DET, NEU-DET, and GC10-DET datasets.
Related papers
- SteelBlastQC: Shot-blasted Steel Surface Dataset with Interpretable Detection of Surface Defects [0.04783917893588482]
This study presents a dataset of 1654 labeled RGB images (512x512) of steel surfaces, classified as either "ready for paint" or "needs shot-blasting"
The dataset captures real-world surface defects, including discoloration, welding lines, scratches and corrosion.
We present interpretable decision-making by all three neural networks, allowing industry users to visually pinpoint problematic regions.
arXiv Detail & Related papers (2025-04-29T07:51:58Z) - Model Hemorrhage and the Robustness Limits of Large Language Models [119.46442117681147]
Large language models (LLMs) demonstrate strong performance across natural language processing tasks, yet undergo significant performance degradation when modified for deployment.
We define this phenomenon as model hemorrhage - performance decline caused by parameter alterations and architectural changes.
arXiv Detail & Related papers (2025-03-31T10:16:03Z) - RAAD-LLM: Adaptive Anomaly Detection Using LLMs and RAG Integration [2.879328762187361]
We present RAAD-LLM, a novel framework for adaptive anomaly detection.<n>By effectively utilizing domain-specific knowledge, RAAD-LLM enhances the detection of anomalies in time series data.<n>Results show significant improvements over our previous model with an accuracy increase from 70.7 to 89.1 on the real-world dataset.
arXiv Detail & Related papers (2025-03-04T17:20:43Z) - Exploring Model Quantization in GenAI-based Image Inpainting and Detection of Arable Plants [0.0]
We propose a framework that leverages Stable Diffusion-based inpainting to augment training data progressively in 10% increments -- up to an additional 200%.<n>Our approach is evaluated on two state-of-the-art object detection models, YOLO11(l) and RT-DETR(l), using the mAP50 metric to assess detection performance.<n> Deployment of the downstream models on the Jetson Orin Nano demonstrates the practical viability of our framework in resource-constrained environments.
arXiv Detail & Related papers (2025-03-04T09:05:01Z) - Patch-aware Vector Quantized Codebook Learning for Unsupervised Visual Defect Detection [4.081433571732692]
Unsupervised visual defect detection is critical in industrial applications.<n>We propose a novel approach using an enhanced VQ-VAE framework optimized for unsupervised defect detection.
arXiv Detail & Related papers (2025-01-15T22:26:26Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
This paper presents a hybrid framework that integrates both statistical feature selection and classification techniques to improve defect detection accuracy.<n>We present around 55 distinguished features that are extracted from industrial images, which are then analyzed using statistical methods.<n>By integrating these methods with flexible machine learning applications, the proposed framework improves detection accuracy and reduces false positives and misclassifications.
arXiv Detail & Related papers (2024-12-11T22:12:21Z) - GAQAT: gradient-adaptive quantization-aware training for domain generalization [54.31450550793485]
We propose a novel Gradient-Adaptive Quantization-Aware Training (GAQAT) framework for DG.
Our approach begins by identifying the scale-gradient conflict problem in low-precision quantization.
Extensive experiments validate the effectiveness of the proposed GAQAT framework.
arXiv Detail & Related papers (2024-12-07T06:07:21Z) - Multi-Scale Deformable Transformers for Student Learning Behavior Detection in Smart Classroom [5.487296795434267]
We introduce the Student Learning Behavior Detection with Multi-Scale Deformable Transformers (SCB-DETR)
This technique significantly improves the detection capabilities for multi-scale and occluded targets, offering a robust solution for analyzing student behavior.
SCB-DETR achieves a mean Average Precision (mAP) of 0.626, which is a 1.5% improvement over the baseline model's mAP and a 6% increase in AP50.
arXiv Detail & Related papers (2024-10-10T11:51:57Z) - UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation [93.38604803625294]
We present UncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG)
We use Signal-to-Noise Ratio (SNR)-based span uncertainty to estimate similarity between text chunks.
UncertaintyRAG outperforms baselines by 2.03% on LLaMA-2-7B, achieving state-of-the-art results.
arXiv Detail & Related papers (2024-10-03T17:39:38Z) - InfoRM: Mitigating Reward Hacking in RLHF via Information-Theoretic Reward Modeling [66.3072381478251]
Reward hacking, also termed reward overoptimization, remains a critical challenge.
We propose a framework for reward modeling, namely InfoRM, by introducing a variational information bottleneck objective.
We show that InfoRM's overoptimization detection mechanism is not only effective but also robust across a broad range of datasets.
arXiv Detail & Related papers (2024-02-14T17:49:07Z) - Cal-DETR: Calibrated Detection Transformer [67.75361289429013]
We propose a mechanism for calibrated detection transformers (Cal-DETR), particularly for Deformable-DETR, UP-DETR and DINO.
We develop an uncertainty-guided logit modulation mechanism that leverages the uncertainty to modulate the class logits.
Results corroborate the effectiveness of Cal-DETR against the competing train-time methods in calibrating both in-domain and out-domain detections.
arXiv Detail & Related papers (2023-11-06T22:13:10Z) - A Computer Vision Enabled damage detection model with improved YOLOv5
based on Transformer Prediction Head [0.0]
Current state-of-the-art deep learning (DL)-based damage detection models often lack superior feature extraction capability in complex and noisy environments.
DenseSPH-YOLOv5 is a real-time DL-based high-performance damage detection model where DenseNet blocks have been integrated with the backbone.
DenseSPH-YOLOv5 obtains a mean average precision (mAP) value of 85.25 %, F1-score of 81.18 %, and precision (P) value of 89.51 % outperforming current state-of-the-art models.
arXiv Detail & Related papers (2023-03-07T22:53:36Z) - Efficient Decoder-free Object Detection with Transformers [75.00499377197475]
Vision transformers (ViTs) are changing the landscape of object detection approaches.
We propose a decoder-free fully transformer-based (DFFT) object detector.
DFFT_SMALL achieves high efficiency in both training and inference stages.
arXiv Detail & Related papers (2022-06-14T13:22:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.