論文の概要: Towards net-zero manufacturing: carbon-aware scheduling for GHG emissions reduction
- arxiv url: http://arxiv.org/abs/2503.01325v1
- Date: Mon, 03 Mar 2025 09:06:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:20:52.296949
- Title: Towards net-zero manufacturing: carbon-aware scheduling for GHG emissions reduction
- Title(参考訳): カーボン・アウェア・スケジューリングによるGHG排出削減に向けたネットゼロ製造に向けて
- Authors: Andrea Mencaroni, Pieter Leyman, Birger Raa, Stijn De Vuyst, Dieter Claeys,
- Abstract要約: スコープ2エミッションは、グリッド電力の生産と消費に関連する間接的なエミッションである。
本研究では, スコープ2の排出削減を目的とした, 炭素を意識したフローショップスケジューリングモデルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Detailed scheduling has traditionally been optimized for the reduction of makespan and manufacturing costs. However, growing awareness of environmental concerns and increasingly stringent regulations are pushing manufacturing towards reducing the carbon footprint of its operations. Scope 2 emissions, which are the indirect emissions related to the production and consumption of grid electricity, are in fact estimated to be responsible for more than one-third of the global GHG emissions. In this context, carbon-aware scheduling can serve as a powerful way to reduce manufacturing's carbon footprint by considering the time-dependent carbon intensity of the grid and the availability of on-site renewable electricity. This study introduces a carbon-aware permutation flow-shop scheduling model designed to reduce scope 2 emissions. The model is formulated as a mixed-integer linear problem, taking into account the forecasted grid generation mix and available on-site renewable electricity, along with the set of jobs to be scheduled and their corresponding power requirements. The objective is to find an optimal day-ahead schedule that minimizes scope 2 emissions. The problem is addressed using a dedicated memetic algorithm, combining evolutionary strategy and local search. Results from computational experiments confirm that by considering the dynamic carbon intensity of the grid and on-site renewable electricity availability, substantial reductions in carbon emissions can be achieved.
- Abstract(参考訳): 詳細なスケジュールは伝統的に製造コストの削減のために最適化されてきた。
しかし、環境問題に対する意識が高まり、規制が厳しくなり、製造業は操業の二酸化炭素排出量を減らそうとしている。
グリッド電力の生産・消費に関連する間接的な排出であるスコープ2排出量は、実際には世界のGHG排出量の3分の1以上を占めると推定されている。
この文脈では、グリッドの時間依存性の炭素強度とオンサイト再生可能電力の可用性を考慮することで、製造の炭素フットプリントを削減する強力な方法として、カーボンアウェアスケジューリングが機能する。
本研究では, スコープ2の排出削減を目的とした, 炭素を意識したフローショップスケジューリングモデルを提案する。
このモデルは、予測グリッド生成混合と現場で利用可能な再生可能電力と、スケジュールされるジョブのセットとその対応する電力要求を考慮した混合整数線形問題として定式化されている。
目的は、スコープ2の排出量を最小限に抑える最適な日頭スケジュールを見つけることである。
この問題は、進化戦略と局所探索を組み合わせた専用メメティックアルゴリズムを用いて解決される。
計算実験の結果、グリッドの動的炭素強度とオンサイト再生可能電力利用率を考慮すると、炭素排出量の大幅な削減が達成できることを確認した。
関連論文リスト
- Improving Power Plant CO2 Emission Estimation with Deep Learning and Satellite/Simulated Data [0.0]
発電所からのCO2排出は、重要なスーパーエミッターとして、地球温暖化に大きく貢献する。
本研究では、Sentinel-5PからのNO2データの統合、連続したXCO2マップの生成、OCO-2/3からの実際の衛星観測をデータスカース領域における71以上の発電所に組み込むことにより、利用可能なデータセットを拡張することによる課題に対処する。
論文 参考訳(メタデータ) (2025-02-04T08:05:15Z) - The Sunk Carbon Fallacy: Rethinking Carbon Footprint Metrics for Effective Carbon-Aware Scheduling [2.562727244613512]
本研究は, 炭素会計指標を用いて, 所定のサーバ群上での炭素を意識したジョブスケジューリングと配置を評価する。
本研究では, 炭素添加コストに影響を及ぼす要因について検討した。
論文 参考訳(メタデータ) (2024-10-19T12:23:59Z) - Carbon Market Simulation with Adaptive Mechanism Design [55.25103894620696]
炭素市場(英: carbon market)は、個人の利益をグローバルユーティリティーと整合させる経済エージェントをインセンティブとする、市場ベースのツールである。
階層型モデルフリーマルチエージェント強化学習(MARL)を用いて市場をシミュレートする適応機構設計フレームワークを提案する。
MARLは、政府エージェントが生産性、平等、二酸化炭素排出のバランスをとることができることを示している。
論文 参考訳(メタデータ) (2024-06-12T05:08:51Z) - A Comprehensive Approach to Carbon Dioxide Emission Analysis in High Human Development Index Countries using Statistical and Machine Learning Techniques [4.106914713812204]
世界規模の二酸化炭素排出量を効果的に削減するためには、二酸化炭素排出量の傾向を予測し、その排出量パターンに基づいて国を分類することが不可欠だ」と述べた。
本稿では,HDI(Human Development Index)を有する20カ国におけるCO2排出量の決定要因について,25年間にわたる経済,環境,エネルギー利用,再生可能資源に関連する要因について,詳細な比較研究を行った。
論文 参考訳(メタデータ) (2024-05-01T21:00:02Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
ジェネレーティブAI(GAI)は、AIoT(Artificial Intelligence of Things)の二酸化炭素排出量を減らす大きな可能性を秘めている
本稿では, 炭素排出量削減のためのGAIの可能性について検討し, 低炭素AIoTのための新しいGAI対応ソリューションを提案する。
本稿では,Large Language Model (LLM) を利用したCO_2排出最適化フレームワークを提案し,このフレームワークにより,プラグ可能なLLMとRetrieval Augmented Generation (RAG) モジュールを設計する。
論文 参考訳(メタデータ) (2024-04-28T05:46:28Z) - Efficient Strategies on Supply Chain Network Optimization for Industrial Carbon Emission Reduction [0.0]
本研究では, 産業用炭素排出量削減を目的としたサプライチェーンネットワーク最適化の効率化戦略について検討した。
本稿では, リアルタイムの炭素排出量データを活用したアダプティブカーボン排出量指数(ACEI)を導入し, サプライチェーン運用における即時調整を行う。
論文 参考訳(メタデータ) (2024-04-17T14:53:55Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
機械学習(ML)は、モデルトレーニングプロセス中に計算を実行するためにエネルギーを使用する必要がある。
このエネルギーの生成には、使用量やエネルギー源によって、温室効果ガスの排出という観点からの環境コストが伴う。
本稿では,自然言語処理とコンピュータビジョンにおいて,95のMLモデルの炭素排出量の時間的および異なるタスクに関する調査を行う。
論文 参考訳(メタデータ) (2023-02-16T18:35:00Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
我々は,ソフトウェアの炭素強度を測定するための枠組みを提供し,運転中の炭素排出量を測定することを提案する。
私たちは、Microsoft Azureクラウドコンピューティングプラットフォームにおける排出削減のための一連のアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-10T17:04:04Z) - Modelling the transition to a low-carbon energy supply [91.3755431537592]
気候変動の影響を制限するため、低炭素電力供給への移行が不可欠である。
二酸化炭素排出量の削減は、世界がピーク点に達するのを防ぐのに役立ちます。
排気ガスの排出は、世界中の気象条件の極端に繋がる可能性がある。
論文 参考訳(メタデータ) (2021-09-25T12:37:05Z) - Optimizing carbon tax for decentralized electricity markets using an
agent-based model [69.3939291118954]
人為的気候変動の影響を避けるためには、化石燃料から低炭素技術への移行が必要である。
炭素税は、この移行を支援する効率的な方法であることが示されている。
NSGA-IIの遺伝的アルゴリズムを用いて、電力混合の平均電気価格と相対炭素強度を最小化する。
論文 参考訳(メタデータ) (2020-05-28T06:54:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。