論文の概要: Optimal Differentially Private Sampling of Unbounded Gaussians
- arxiv url: http://arxiv.org/abs/2503.01766v1
- Date: Mon, 03 Mar 2025 17:44:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:24:57.524750
- Title: Optimal Differentially Private Sampling of Unbounded Gaussians
- Title(参考訳): 非有界ガウスの最適個人サンプリング
- Authors: Valentio Iverson, Gautam Kamath, Argyris Mouzakis,
- Abstract要約: 我々は、$left(varepsilon, deltaright)$-differential privacyという制約の下で、境界のないガウス分布からサンプリングするための最初の$widetildemathcalOleft(dright)$-sampleアルゴリズムを提供する。
- 参考スコア(独自算出の注目度): 7.301731511458241
- License:
- Abstract: We provide the first $\widetilde{\mathcal{O}}\left(d\right)$-sample algorithm for sampling from unbounded Gaussian distributions under the constraint of $\left(\varepsilon, \delta\right)$-differential privacy. This is a quadratic improvement over previous results for the same problem, settling an open question of Ghazi, Hu, Kumar, and Manurangsi.
- Abstract(参考訳): 我々は、最初の$\widetilde{\mathcal{O}}\left(d\right)$-sampleアルゴリズムを提供し、$\left(\varepsilon, \delta\right)$-differential privacyの制約の下で、非有界ガウス分布からサンプリングする。
これは、Ghazi、Hu、Kumar、Manurangsiのオープンな疑問を解決し、同じ問題に対する以前の結果よりも二次的な改善である。
関連論文リスト
- Perturb-and-Project: Differentially Private Similarities and Marginals [73.98880839337873]
差分プライバシーのための入力摂動フレームワークを再検討し、入力にノイズを付加する。
まず、ペアワイズ・コサイン類似性をプライベートにリリースするための新しい効率的なアルゴリズムを設計する。
我々は,$k$の辺縁クエリを$n$の機能に対して計算する新しいアルゴリズムを導出する。
論文 参考訳(メタデータ) (2024-06-07T12:07:16Z) - Variance-Dependent Regret Bounds for Non-stationary Linear Bandits [52.872628573907434]
報酬分布の分散と$B_K$の分散を利用するアルゴリズムを提案する。
Restarted Weighted$textOFUL+$とRestarted$textSAVE+$の2つの新しいアルゴリズムを紹介します。
特に、V_K$が$K$よりはるかに小さい場合、我々のアルゴリズムは、異なる設定下での非定常線形バンドレットの最先端結果よりも優れている。
論文 参考訳(メタデータ) (2024-03-15T23:36:55Z) - Tractable MCMC for Private Learning with Pure and Gaussian Differential Privacy [23.12198546384976]
後方サンプリングは$varepsilon$-pure差分プライバシー保証を提供する。
これは、$(varepsilon,delta)$-approximate DPによって引き起こされた潜在的に束縛されていないプライバシー侵害に悩まされない。
しかし実際には、マルコフ連鎖モンテカルロのような近似的なサンプリング手法を適用する必要がある。
論文 参考訳(メタデータ) (2023-10-23T07:54:39Z) - Mixtures of Gaussians are Privately Learnable with a Polynomial Number of Samples [9.649879910148854]
差分プライバシー(DP)制約下におけるガウシアン混合量の推定問題について検討する。
主な結果は、$textpoly(k,d,1/alpha,1/varepsilon,log (1/delta))$サンプルが$k$ Gaussians in $mathbbRd$から$alpha$までを推定するのに十分であることです。
これは GMM の構造的仮定を一切含まない問題に対する最初の有限標本複雑性上界である。
論文 参考訳(メタデータ) (2023-09-07T17:02:32Z) - Robust Sparse Mean Estimation via Sum of Squares [42.526664955704746]
本研究では,高次元スパース平均推定の問題点を,逆数外乱の$epsilon$-fractionの存在下で検討する。
我々のアルゴリズムは、サム・オブ・スクエア(Sum-of-Squares)ベースのアルゴリズムアプローチに従う。
論文 参考訳(メタデータ) (2022-06-07T16:49:54Z) - New Lower Bounds for Private Estimation and a Generalized Fingerprinting
Lemma [10.176795938619417]
統計的推定タスクの新たな下限を$(varepsilon, delta)$-differential privacyの制約の下で証明する。
フロベニウスノルムの推定には$Omega(d2)$サンプルが必要であり、スペクトルノルムでは$Omega(d3/2)$サンプルが必要である。
論文 参考訳(メタデータ) (2022-05-17T17:55:10Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
ランダムシャッフルは、局所的ランダム化データの差分プライバシー保証を増幅する。
私たちの結果は、以前の作業よりも単純で、ほぼ同じ保証で差分プライバシーに拡張された新しいアプローチに基づいています。
論文 参考訳(メタデータ) (2020-12-23T17:07:26Z) - Robustly Learning Mixtures of $k$ Arbitrary Gaussians [47.40835932474677]
任意の固定された$k$に対して$k$任意のガウスの混合を$mathbbRd$で頑健に推定する問題に対して、一定数の任意の汚職が存在する場合の時間アルゴリズムを与える。
本研究の主なツールは,2乗法に依拠する効率的な分節クラスタリングアルゴリズムと,Frobeniusノルムおよび低ランク項の誤りを許容する新しいテンソル分解アルゴリズムである。
論文 参考訳(メタデータ) (2020-12-03T17:54:03Z) - Stochastic Linear Bandits Robust to Adversarial Attacks [117.665995707568]
我々はロバスト位相除去アルゴリズムの2つの変種を提供し、その1つは$C$を知っており、もう1つはそうでない。
いずれの変種も、倒壊しない場合には、それぞれ$C = 0$ となり、それぞれ追加の加法項が生じる。
文脈的設定では、単純な欲求的アルゴリズムは、明示的な探索を行わず、C$を知らないにもかかわらず、ほぼ最適加法的後悔項で証明可能な堅牢性を示す。
論文 参考訳(メタデータ) (2020-07-07T09:00:57Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
有界非次元最適化のための差分プライベート(DP)アルゴリズムを提案する。
標準勾配法に対する経験的優位性について,2つの一般的なディープラーニング手法を実証する。
論文 参考訳(メタデータ) (2020-06-24T06:01:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。