Towards System-Level Quantum-Accelerator Integration
- URL: http://arxiv.org/abs/2507.19212v1
- Date: Fri, 25 Jul 2025 12:30:42 GMT
- Title: Towards System-Level Quantum-Accelerator Integration
- Authors: Ralf Ramsauer, Wolfgang Mauerer,
- Abstract summary: We propose a vertically integrated quantum systems architecture that treats quantum accelerators and processing units as peripheral system components.<n>A central element is the Quantum Abstraction Layer (QAL) at operating system kernel level.<n>We present first results towards such an integrated architecture, including a virtual QPU model based on QEMU.
- Score: 3.4486179803947254
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computers are often treated as experimental add-ons that are loosely coupled to classical infrastructure through high-level interpreted languages and cloud-like orchestration. However, future deployments in both, high-performance computing (HPC) and embedded environments, will demand tighter integration for lower latencies, stronger determinism, and architectural consistency, as well as to implement error correction and other tasks that require tight quantum-classical interaction as generically as possible. We propose a vertically integrated quantum systems architecture that treats quantum accelerators and processing units as peripheral system components. A central element is the Quantum Abstraction Layer (QAL) at operating system kernel level. It aims at real-time, low-latency, and high-throughput interaction between quantum and classical resources, as well as robust low-level quantum operations scheduling and generic resource management. It can serve as blueprint for orchestration of low-level computational components "around" a QPU (and inside a quantum computer), and across different modalities. We present first results towards such an integrated architecture, including a virtual QPU model based on QEMU. The architecture is validated through functional emulation on three base architectures (x86_64, ARM64, and RISC-V), and timing-accurate FPGA-based simulations. This allows for a realistic evaluation of hybrid system performance and quantum advantage scenarios. Our work lays the ground for a system-level co-design methodology tailored for the next generation of quantum-classical computing.
Related papers
- Neural Network Architectures for Scalable Quantum State Tomography: Benchmarking and Memristor-Based Acceleration [0.9572566550427288]
Quantum State Tomography (QST) is essential for characterizing and validating quantum systems.<n>Prior claims of performance have relied on architectural assumptions rather than systematic validation.<n>We benchmark several neural network architectures to determine which scale effectively with qubit number and which fail to maintain high fidelity as system size increases.
arXiv Detail & Related papers (2025-07-30T18:12:10Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - RhoDARTS: Differentiable Quantum Architecture Search with Density Matrix Simulations [48.670876200492415]
Variational Quantum Algorithms (VQAs) are a promising approach for leveraging powerful Noisy Intermediate-Scale Quantum (NISQ) computers.<n>We propose $rho$DARTS, a differentiable Quantum Architecture Search (QAS) algorithm that models the search process as the evolution of a quantum mixed state.
arXiv Detail & Related papers (2025-06-04T08:30:35Z) - Bridging Paradigms: Designing for HPC-Quantum Convergence [0.9360388224886863]
We propose a hardware-agnostic software framework that supports both current intermediate-scale quantum devices and future fault-tolerant quantum computers.<n>The architecture includes a quantum gateway interface, standardized APIs for resource management, and robust scheduling mechanisms.<n>Key innovations include: (1) a unified resource management system that efficiently coordinates quantum and classical resources, (2) a flexible quantum programming interface that abstracts hardware-specific details, and (4) a comprehensive tool chain for quantum circuit optimization and execution.
arXiv Detail & Related papers (2025-03-03T18:18:45Z) - Efficient charge-preserving excited state preparation with variational quantum algorithms [33.03471460050495]
We introduce a charge-preserving VQD (CPVQD) algorithm, designed to incorporate symmetry and the corresponding conserved charge into the VQD framework.
Results show applications in high-energy physics, nuclear physics, and quantum chemistry.
arXiv Detail & Related papers (2024-10-18T10:30:14Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Multi-GPU-Enabled Hybrid Quantum-Classical Workflow in Quantum-HPC Middleware: Applications in Quantum Simulations [1.9922905420195367]
This study introduces an innovative distribution-aware Quantum-Classical-Quantum architecture.
It integrates cutting-edge quantum software framework works with high-performance classical computing resources.
It addresses challenges in quantum simulation for materials and condensed matter physics.
arXiv Detail & Related papers (2024-03-09T07:38:45Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Integration of Quantum Accelerators with High Performance Computing -- A
Review of Quantum Programming Tools [0.8477185635891722]
This study aims to characterize existing quantum programming tools (QPTs) from an HPC perspective.
It investigates if existing QPTs have the potential to be efficiently integrated with classical computing models.
This work structures a set of criteria into an analysis blueprint that enables HPC scientists to assess whether a QPT is suitable for the quantum-accelerated classical application.
arXiv Detail & Related papers (2023-09-12T12:24:12Z) - A Conceptual Architecture for a Quantum-HPC Middleware [1.82035221675293]
Quantum computing promises potential for science and industry by solving certain computationally complex problems faster than classical computers.
With the increasing scale, systems that facilitate the efficient coupling of quantum-classical computing are becoming critical.
arXiv Detail & Related papers (2023-08-12T16:48:56Z) - Quantum computing hardware for HEP algorithms and sensing [36.67390040418004]
Quantum information science harnesses the principles of quantum mechanics to realize computational algorithms with complexities vastly intractable by current computer platforms.
Fermilab's Superconducting Quantum Materials and Systems (SQMS) Center is dedicated to providing breakthroughs in quantum computing and sensing.
We discuss the two most promising superconducting quantum architectures for HEP algorithms, i.e. three-level systems (qutrits) supported by transmon devices coupled to planar devices and multi-level systems (qudits with arbitrary N energy levels) supported by superconducting 3D cavities.
arXiv Detail & Related papers (2022-04-19T01:37:36Z) - When BERT Meets Quantum Temporal Convolution Learning for Text
Classification in Heterogeneous Computing [75.75419308975746]
This work proposes a vertical federated learning architecture based on variational quantum circuits to demonstrate the competitive performance of a quantum-enhanced pre-trained BERT model for text classification.
Our experiments on intent classification show that our proposed BERT-QTC model attains competitive experimental results in the Snips and ATIS spoken language datasets.
arXiv Detail & Related papers (2022-02-17T09:55:21Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.