CrowdSelect: Synthetic Instruction Data Selection with Multi-LLM Wisdom
- URL: http://arxiv.org/abs/2503.01836v1
- Date: Mon, 03 Mar 2025 18:56:44 GMT
- Title: CrowdSelect: Synthetic Instruction Data Selection with Multi-LLM Wisdom
- Authors: Yisen Li, Lingfeng Yang, Wenxuan Shen, Pan Zhou, Yao Wan, Weiwei Lin, Dongping Chen,
- Abstract summary: Distilling advanced Large Language Models' instruction-following capabilities into smaller models has become a mainstream approach in model training.<n>We investigate more diverse signals to capture comprehensive instruction-response pair characteristics.<n>We propose CrowdSelect, an integrated metric incorporating a clustering-based approach to maintain response diversity.
- Score: 45.382739152668954
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distilling advanced Large Language Models' instruction-following capabilities into smaller models using a selected subset has become a mainstream approach in model training. While existing synthetic instruction data selection strategies rely mainly on single-dimensional signals (i.e., reward scores, model perplexity), they fail to capture the complexity of instruction-following across diverse fields. Therefore, we investigate more diverse signals to capture comprehensive instruction-response pair characteristics and propose three foundational metrics that leverage Multi-LLM wisdom, informed by (1) diverse LLM responses and (2) reward model assessment. Building upon base metrics, we propose CrowdSelect, an integrated metric incorporating a clustering-based approach to maintain response diversity. Our comprehensive experiments demonstrate that our foundation metrics consistently improve performance across 4 base models on MT-bench and Arena-Hard. CrowdSelect, efficiently incorporating all metrics, achieves state-of-the-art performance in both Full and LoRA fine-tuning, showing improvements of 4.81% on Arena-Hard and 11.1% on MT-bench with Llama-3.2-3b-instruct. We hope our findings will bring valuable insights for future research in this direction. Code are available at https://github.com/listentm/crowdselect.
Related papers
- Nemotron-CrossThink: Scaling Self-Learning beyond Math Reasoning [66.43194385702297]
Large Language Models (LLMs) have shown strong reasoning capabilities, particularly when enhanced through Reinforcement Learning (RL)
We propose NEMOTRON-CROSSTHINK, a framework that systematically incorporates multi-domain corpora, including both synthetic and real-world question-answer pairs, into RL training to improve generalization across diverse reasoning tasks.
arXiv Detail & Related papers (2025-04-15T21:37:13Z) - MLLM-Selector: Necessity and Diversity-driven High-Value Data Selection for Enhanced Visual Instruction Tuning [69.7347209018861]
We introduce MLLM-Selector, an automated approach that identifies valuable data for visual instruction tuning.
We calculate necessity scores for each sample in the VIT data pool to identify samples pivotal for enhancing model performance.
Our findings underscore the importance of mixing necessity and diversity in data choice, leading to the creation of MLLM-Selector.
arXiv Detail & Related papers (2025-03-26T12:42:37Z) - DFPE: A Diverse Fingerprint Ensemble for Enhancing LLM Performance [11.753349115726952]
We propose a novel ensemble method - Diverse Fingerprint Ensemble (DFPE)<n>Our approach involves: (1) clustering models based on response "fingerprints" patterns, (2) applying a quantile-based filtering mechanism, and (3) assigning adaptive weights to remaining models.<n>In experiments on the Massive Multitask Language Understanding (MMLU) benchmark, DFPE outperforms the best single model by 3% overall accuracy and 5% in discipline-level accuracy.
arXiv Detail & Related papers (2025-01-29T08:44:45Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.<n>Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.<n>We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - One-Shot Learning as Instruction Data Prospector for Large Language Models [108.81681547472138]
textscNuggets uses one-shot learning to select high-quality instruction data from extensive datasets.
We show that instruction tuning with the top 1% of examples curated by textscNuggets substantially outperforms conventional methods employing the entire dataset.
arXiv Detail & Related papers (2023-12-16T03:33:12Z) - Self-Evolved Diverse Data Sampling for Efficient Instruction Tuning [47.02160072880698]
We introduce a self-evolving mechanism that allows the model itself to actively sample subsets that are equally or even more effective.
The key to our data sampling technique lies in the enhancement of diversity in the chosen subsets.
Extensive experiments across three datasets and benchmarks demonstrate the effectiveness of DiverseEvol.
arXiv Detail & Related papers (2023-11-14T14:10:40Z) - 3M: Multi-loss, Multi-path and Multi-level Neural Networks for speech
recognition [31.992543274210835]
We identify and integrate several approaches to achieve further improvements for ASR tasks.
Specifically, multi-loss refers to the joint CTC/AED loss and multi-path denotes the Mixture-of-Experts(MoE) architecture.
We evaluate our proposed method on the public WenetSpeech dataset and experimental results show that the proposed method provides 12.2%-17.6% relative CER improvement.
arXiv Detail & Related papers (2022-04-07T03:10:49Z) - AvgOut: A Simple Output-Probability Measure to Eliminate Dull Responses [97.50616524350123]
We build dialogue models that are dynamically aware of what utterances or tokens are dull without any feature-engineering.
The first model, MinAvgOut, directly maximizes the diversity score through the output distributions of each batch.
The second model, Label Fine-Tuning (LFT), prepends to the source sequence a label continuously scaled by the diversity score to control the diversity level.
The third model, RL, adopts Reinforcement Learning and treats the diversity score as a reward signal.
arXiv Detail & Related papers (2020-01-15T18:32:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.