論文の概要: Volume-Wise Task fMRI Decoding with Deep Learning:Enhancing Temporal Resolution and Cognitive Function Analysis
- arxiv url: http://arxiv.org/abs/2503.01925v1
- Date: Sun, 02 Mar 2025 12:07:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:21:07.628748
- Title: Volume-Wise Task fMRI Decoding with Deep Learning:Enhancing Temporal Resolution and Cognitive Function Analysis
- Title(参考訳): 深層学習を用いたボリュームワイズタスクfMRIデコーディング:時間分解能と認知機能解析の強化
- Authors: Yueyang Wu, Sinan Yang, Yanming Wang, Jiajie He, Muhammad Mohsin Pathan, Bensheng Qiu, Xiaoxiao Wang,
- Abstract要約: 本研究では,tfMRIデータ中のタスク状態のボリュームワイド同定を目的としたディープニューラルネットワークを提案する。
このモデルは94.0%と79.6%という驚くべき平均精度を達成した。
- 参考スコア(独自算出の注目度): 0.5641614679885804
- License:
- Abstract: In recent years,the application of deep learning in task functional Magnetic Resonance Imaging (tfMRI) decoding has led to significant advancements. However,most studies remain constrained by assumption of temporal stationarity in neural activity,resulting in predominantly block-wise analysis with limited temporal resolution on the order of tens of seconds. This limitation restricts the ability to decode cognitive functions in detail. To address these limitations, this study proposes a deep neural network designed for volume-wise identification of task states within tfMRI data,thereby overcoming the constraints of conventional methods. Evaluated on Human Connectome Project (HCP) motor and gambling tfMRI datasets,the model achieved impressive mean accuracy rates of 94.0% and 79.6%,respectively. These results demonstrate a substantial enhancement in temporal resolution,enabling more detailed exploration of cognitive processes. The study further employs visualization algorithms to investigate dynamic brain mappings during different tasks,marking a significant step forward in deep learning-based frame-level tfMRI decoding. This approach offers new methodologies and tools for examining dynamic changes in brain activities and understanding the underlying cognitive mechanisms.
- Abstract(参考訳): 近年,タスク機能型磁気共鳴イメージング(tfMRI)におけるディープラーニングの応用は,大きな進歩をもたらした。
しかし、ほとんどの研究は神経活動の時間的定常性の仮定によって制約され、数十秒の順序で時間分解能が制限されたブロックワイズ分析が主流である。
この制限は認知機能を詳細に復号する能力を制限する。
これらの制約に対処するため,本研究では,従来の手法の制約を克服した,tfMRIデータ内のタスク状態のボリュームワイズ同定を目的としたディープニューラルネットワークを提案する。
HCP(Human Connectome Project)のモーターとギャンブルのtfMRIデータセットで評価され、94.0%と79.6%という驚くべき平均精度を達成した。
これらの結果から、時間分解能の大幅な向上が示され、認知過程のより詳細な探索が促進された。
この研究は、様々なタスク中の動的脳マッピングを可視化するアルゴリズムも採用しており、ディープラーニングベースのフレームレベルのtfMRIデコーディングにおいて重要な進歩を示している。
このアプローチは、脳活動の動的変化を調べ、基礎となる認知メカニズムを理解するための新しい方法論とツールを提供する。
関連論文リスト
- BrainMAP: Learning Multiple Activation Pathways in Brain Networks [77.15180533984947]
本稿では,脳ネットワークにおける複数の活性化経路を学習するための新しいフレームワークであるBrainMAPを紹介する。
本フレームワークは,タスクに関わる重要な脳領域の説明的分析を可能にする。
論文 参考訳(メタデータ) (2024-12-23T09:13:35Z) - TEAM PILOT -- Learned Feasible Extendable Set of Dynamic MRI Acquisition Trajectories [2.7719338074999547]
本稿では,3次元ウィンドウアテンションとフレキシブルで時間的に拡張可能な獲得軌跡を用いた新しい深部圧縮型センシング手法を提案する。
本手法は既存の手法と比較してトレーニング時間と推論時間を著しく短縮する。
実データによるテストは、我々のアプローチが現在の最先端技術よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-09-19T13:45:13Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
本稿では,fMRI時系列データから直接表現を学習するBrain Masked Auto-Encoder(BrainMAE)を提案する。
BrainMAEは、4つの異なる下流タスクにおいて、確立されたベースラインメソッドをかなりのマージンで一貫して上回っている。
論文 参考訳(メタデータ) (2024-06-24T19:16:24Z) - NeuroCine: Decoding Vivid Video Sequences from Human Brain Activties [23.893490180665996]
本稿では,fMRIデータを復号化するための新たな二相フレームワークであるNeuroCineを紹介する。
公開されているfMRIデータセットでテストした結果,有望な結果が得られた。
このモデルが既存の脳構造や機能と一致し,その生物学的妥当性と解釈可能性を示すことが示唆された。
論文 参考訳(メタデータ) (2024-02-02T17:34:25Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - Learning low-dimensional dynamics from whole-brain data improves task
capture [2.82277518679026]
逐次変分オートエンコーダ(SVAE)を用いたニューラルダイナミクスの低次元近似学習手法を提案する。
本手法は,従来の手法よりも精度の高い認知過程を予測できるスムーズなダイナミクスを見出す。
我々は、モータ、ワーキングメモリ、リレーショナル処理タスクを含む様々なタスクfMRIデータセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2023-05-18T18:43:13Z) - Explainable fMRI-based Brain Decoding via Spatial Temporal-pyramid Graph
Convolutional Network [0.8399688944263843]
既存のfMRIベースの脳デコードのための機械学習手法は、分類性能が低いか、説明性が悪いかのいずれかに悩まされている。
本稿では,機能的脳活動の時空間グラフ表現を捉えるために,生物学的にインスパイアされたアーキテクチャである時空間ピラミドグラフ畳み込みネットワーク(STpGCN)を提案する。
我々は,Human Connectome Project (HCP) S1200から23の認知タスク下でのfMRIデータに関する広範な実験を行った。
論文 参考訳(メタデータ) (2022-10-08T12:14:33Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Deep Recurrent Encoder: A scalable end-to-end network to model brain
signals [122.1055193683784]
複数の被験者の脳応答を一度に予測するために訓練されたエンドツーエンドのディープラーニングアーキテクチャを提案する。
1時間の読解作業で得られた大脳磁図(meg)記録を用いて,このアプローチを検証した。
論文 参考訳(メタデータ) (2021-03-03T11:39:17Z) - 4D Deep Learning for Multiple Sclerosis Lesion Activity Segmentation [49.32653090178743]
我々は,MRIボリュームの履歴を用いて,この問題をフル4次元ディープラーニングに拡張することで,性能が向上するかどうか検討する。
提案手法は, 病変側真陽性率0.84, 病変側偽陽性率0.19で従来手法より優れていた。
論文 参考訳(メタデータ) (2020-04-20T11:41:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。