Decision-Focused Fine-Tuning of Time Series Foundation Models for Dispatchable Feeder Optimization
- URL: http://arxiv.org/abs/2503.01936v1
- Date: Mon, 03 Mar 2025 07:47:20 GMT
- Title: Decision-Focused Fine-Tuning of Time Series Foundation Models for Dispatchable Feeder Optimization
- Authors: Maximilian Beichter, Nils Friederich, Janik Pinter, Dorina Werling, Kaleb Phipps, Sebastian Beichter, Oliver Neumann, Ralf Mikut, Veit Hagenmeyer, Benedikt Heidrich,
- Abstract summary: We use decision-focused fine-tuning within time series foundation models to offer a scalable and efficient solution for the dispatchable feeder optimization problem.<n>To obtain more robust predictions for scarce building data, we use Moirai as a state-of-the-art foundation model.<n>Comparing the decision-focused fine-tuned Moirai with a state-of-the-art classical prediction-focused fine-tuning Morai, we observe an improvement of 9.45% in average total daily costs.
- Score: 0.5808168734833972
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Time series foundation models provide a universal solution for generating forecasts to support optimization problems in energy systems. Those foundation models are typically trained in a prediction-focused manner to maximize forecast quality. In contrast, decision-focused learning directly improves the resulting value of the forecast in downstream optimization rather than merely maximizing forecasting quality. The practical integration of forecast values into forecasting models is challenging, particularly when addressing complex applications with diverse instances, such as buildings. This becomes even more complicated when instances possess specific characteristics that require instance-specific, tailored predictions to increase the forecast value. To tackle this challenge, we use decision-focused fine-tuning within time series foundation models to offer a scalable and efficient solution for decision-focused learning applied to the dispatchable feeder optimization problem. To obtain more robust predictions for scarce building data, we use Moirai as a state-of-the-art foundation model, which offers robust and generalized results with few-shot parameter-efficient fine-tuning. Comparing the decision-focused fine-tuned Moirai with a state-of-the-art classical prediction-focused fine-tuning Morai, we observe an improvement of 9.45% in average total daily costs.
Related papers
- Global-Decision-Focused Neural ODEs for Proactive Grid Resilience Management [50.34345101758248]
We propose predict-all-then-optimize-globally (PATOG), a framework that integrates outage prediction with globally optimized interventions.
Our approach ensures spatially and temporally coherent decision-making, improving both predictive accuracy and operational efficiency.
Experiments on synthetic and real-world datasets demonstrate significant improvements in outage prediction consistency and grid resilience.
arXiv Detail & Related papers (2025-02-25T16:15:35Z) - Optimal starting point for time series forecasting [1.9937737230710553]
We introduce a novel approach called Optimal Starting Point Time Series Forecast (OSP-TSP) for optimal forecasting.<n>The proposed approach can determine the optimal starting point (OSP) of the time series and then enhance the prediction performances of the base forecasting models.<n> Empirical results indicate that predictions based on the OSP-TSP approach consistently outperform those using the complete time series dataset.
arXiv Detail & Related papers (2024-09-25T11:51:00Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Fine-grained Forecasting Models Via Gaussian Process Blurring Effect [6.472434306724611]
Time series forecasting is a challenging task due to the existence of complex and dynamic temporal dependencies.
Using more training data is one way to improve the accuracy, but this source is often limited.
We are building on successful denoising approaches for image generation by advocating for an end-to-end forecasting and denoising paradigm.
arXiv Detail & Related papers (2023-12-21T20:25:16Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - Ensemble Modeling for Time Series Forecasting: an Adaptive Robust
Optimization Approach [3.7565501074323224]
This paper proposes a new methodology for building robust ensembles of time series forecasting models.
We demonstrate the effectiveness of our method through a series of synthetic experiments and real-world applications.
arXiv Detail & Related papers (2023-04-09T20:30:10Z) - SimPO: Simultaneous Prediction and Optimization [3.181417685380586]
We propose a formulation for the Simultaneous Prediction and Optimization (SimPO) framework.
This framework introduces the use of a joint weighted loss of a decision-driven predictive ML model and an optimization objective function.
arXiv Detail & Related papers (2022-03-31T20:01:36Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Fast Rates for Contextual Linear Optimization [52.39202699484225]
We show that a naive plug-in approach achieves regret convergence rates that are significantly faster than methods that directly optimize downstream decision performance.
Our results are overall positive for practice: predictive models are easy and fast to train using existing tools, simple to interpret, and, as we show, lead to decisions that perform very well.
arXiv Detail & Related papers (2020-11-05T18:43:59Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - A framework for probabilistic weather forecast post-processing across
models and lead times using machine learning [3.1542695050861544]
We show how to bridge the gap between sets of separate forecasts from NWP models and the 'ideal' forecast for decision support.
We use Quantile Regression Forests to learn the error profile of each numerical model, and use these to apply empirically-derived probability distributions to forecasts.
Second, we combine these probabilistic forecasts using quantile averaging. Third, we interpolate between the aggregate quantiles in order to generate a full predictive distribution.
arXiv Detail & Related papers (2020-05-06T16:46:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.