論文の概要: BRIDGE: Bootstrapping Text to Control Time-Series Generation via Multi-Agent Iterative Optimization and Diffusion Modelling
- arxiv url: http://arxiv.org/abs/2503.02445v1
- Date: Tue, 04 Mar 2025 09:40:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:21:42.584506
- Title: BRIDGE: Bootstrapping Text to Control Time-Series Generation via Multi-Agent Iterative Optimization and Diffusion Modelling
- Title(参考訳): BRIDGE:マルチエージェント反復最適化と拡散モデルによる時系列生成制御のためのブートストラップテキスト
- Authors: Hao Li, Yu-Hao Huang, Chang Xu, Viktor Schlegel, Ren-He Jiang, Riza Batista-Navarro, Goran Nenadic, Jiang Bian,
- Abstract要約: 時系列生成(TSG、Time-Series Generation)は、シミュレーション、データ拡張、および反事実分析に広く応用された、顕著な研究分野である。
我々は、テキストが意味的な洞察、ドメイン情報、インスタンス固有の時間パターンを提供し、TSGをガイドし改善することができると論じている。
BRIDGEはテキスト制御型TSGフレームワークで,テキスト記述とセマンティックプロトタイプを統合し,ドメインレベルのガイダンスをサポートする。
- 参考スコア(独自算出の注目度): 35.23364682572953
- License:
- Abstract: Time-series Generation (TSG) is a prominent research area with broad applications in simulations, data augmentation, and counterfactual analysis. While existing methods have shown promise in unconditional single-domain TSG, real-world applications demand for cross-domain approaches capable of controlled generation tailored to domain-specific constraints and instance-level requirements. In this paper, we argue that text can provide semantic insights, domain information and instance-specific temporal patterns, to guide and improve TSG. We introduce ``Text-Controlled TSG'', a task focused on generating realistic time series by incorporating textual descriptions. To address data scarcity in this setting, we propose a novel LLM-based Multi-Agent framework that synthesizes diverse, realistic text-to-TS datasets. Furthermore, we introduce BRIDGE, a hybrid text-controlled TSG framework that integrates semantic prototypes with text description for supporting domain-level guidance. This approach achieves state-of-the-art generation fidelity on 11 of 12 datasets, and improves controllability by 12.52% on MSE and 6.34% MAE compared to no text input generation, highlighting its potential for generating tailored time-series data.
- Abstract(参考訳): 時系列生成(TSG、Time-Series Generation)は、シミュレーション、データ拡張、および反事実分析に広く応用された、顕著な研究分野である。
既存の手法は、無条件の単一ドメインTSGにおいて有望であることを示しているが、現実のアプリケーションは、ドメイン固有の制約やインスタンスレベルの要求に合わせて、生成を制御することができるクロスドメインアプローチを要求する。
本稿では、テキストが意味的洞察、ドメイン情報、インスタンス固有の時間パターンを提供し、TSGをガイドし改善することができると論じる。
本稿では,テキスト記述を組み込んだ実写時系列生成に焦点をあてたタスクである ``Text-Controlled TSG'' を紹介する。
この環境でのデータの不足に対処するために,多様な現実的なテキスト・トゥ・TSデータセットを合成する新しいLLMベースのマルチエージェント・フレームワークを提案する。
さらに,テキスト制御型TSGフレームワークBRIDGEを導入し,テキスト記述とセマンティックプロトタイプを統合し,ドメインレベルのガイダンスをサポートする。
このアプローチは、12のデータセットのうち11のステート・オブ・ザ・アーティジェネレーションの忠実さを実現し、テキスト入力生成を行わないのに対して、MSEでは12.52%、MAEでは6.34%の制御性を向上し、調整された時系列データを生成する可能性を強調している。
関連論文リスト
- Language in the Flow of Time: Time-Series-Paired Texts Weaved into a Unified Temporal Narrative [65.84249211767921]
テキスト・アズ・タイム・シリーズ(英語版) (TaTS) は時系列の補助変数であると考えている。
TaTSは、既存の数値のみの時系列モデルにプラグインすることができ、ペア化されたテキストで時系列データを効率的に処理することができる。
論文 参考訳(メタデータ) (2025-02-13T03:43:27Z) - Time Series Language Model for Descriptive Caption Generation [11.796431549951055]
本稿では,時系列キャプションに特化して設計された新しい時系列言語モデルTSLMを紹介する。
TSLMはエンコーダ・デコーダモデルとして機能し、テキストプロンプトと時系列データ表現の両方を活用する。
TSLMは、複数のデータモダリティから既存の最先端アプローチよりも大きなマージンで優れていることを示す。
論文 参考訳(メタデータ) (2025-01-03T14:34:30Z) - Hierarchical Multimodal LLMs with Semantic Space Alignment for Enhanced Time Series Classification [4.5939667818289385]
HiTimeは階層的なマルチモーダルモデルであり、時間的情報を大きな言語モデルにシームレスに統合する。
本研究は, 時間的特徴をLCMに組み込むことにより, 時系列解析の進歩に寄与する可能性が示唆された。
論文 参考訳(メタデータ) (2024-10-24T12:32:19Z) - Detecting AI-Generated Texts in Cross-Domains [3.2245324254437846]
ベースラインモデルとして,RoBERTa-Rankerというランキング分類器を訓練する。
次に、新しいドメインで少量のラベル付きデータしか必要としないRoBERTa-Rankerを微調整する手法を提案する。
実験により、この微調整されたドメイン認識モデルは、一般的なTectGPTとGPTZeroより優れていることが示された。
論文 参考訳(メタデータ) (2024-10-17T18:43:30Z) - TS-HTFA: Advancing Time Series Forecasting via Hierarchical Text-Free Alignment with Large Language Models [14.411646409316624]
時系列予測の新しい手法である textbfHierarchical textbfText-textbfFree textbfAlignment (textbfTS-HTFA) を導入する。
我々は、QR分解語埋め込みと学習可能なプロンプトに基づいて、ペア化されたテキストデータを適応的な仮想テキストに置き換える。
複数の時系列ベンチマークの実験は、HTFAが最先端のパフォーマンスを達成することを示した。
論文 参考訳(メタデータ) (2024-09-23T12:57:24Z) - Towards Unified Multi-granularity Text Detection with Interactive Attention [56.79437272168507]
Detect Any Text"は、シーンテキストの検出、レイアウト分析、ドキュメントページの検出を結合的なエンドツーエンドモデルに統合する高度なパラダイムである。
DATにおける重要なイノベーションは、テキストインスタンスの表現学習を大幅に強化する、粒度横断型アテンションモジュールである。
テストによると、DATは様々なテキスト関連ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-05-30T07:25:23Z) - Beyond Trend and Periodicity: Guiding Time Series Forecasting with Textual Cues [9.053923035530152]
本研究は,TGTSF(Text-Guided Time Series Forecasting)タスクを紹介する。
TGTSFは、チャネル記述や動的ニュースなどのテキストキューを統合することで、従来の手法の限界に対処する。
テキストキューと時系列データを相互アテンション機構を用いて融合する,堅牢なベースラインモデルである TGForecaster を提案する。
論文 参考訳(メタデータ) (2024-05-22T10:45:50Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
Transformerアーキテクチャを用いた問合せベースのエンドツーエンドテキストスポッターであるTextFormerを提案する。
TextFormerは、画像エンコーダとテキストデコーダの上に構築され、マルチタスクモデリングのための共同セマンティック理解を学ぶ。
分類、セグメンテーション、認識のブランチの相互訓練と最適化を可能にし、より深い特徴共有をもたらす。
論文 参考訳(メタデータ) (2023-06-06T03:37:41Z) - MacLaSa: Multi-Aspect Controllable Text Generation via Efficient
Sampling from Compact Latent Space [110.85888003111653]
マルチアスペクト制御可能なテキスト生成は、複数の望ましい属性を同時に持つ流動文を生成することを目的としている。
マルチアスペクト制御のための新しいアプローチ、すなわちMacLaSaを導入し、複数の側面に対してコンパクトな潜在空間を推定する。
また,MacLaSaは,高い推論速度を維持しつつ,属性関連性やテキスト品質を高いベースラインで向上させることを示す。
論文 参考訳(メタデータ) (2023-05-22T07:30:35Z) - Few-shot Natural Language Generation for Task-Oriented Dialog [113.07438787659859]
FewShotWozは,タスク指向対話システムにおける数ショットの学習設定をシミュレートする最初の NLG ベンチマークである。
我々は, SC-GPTモデルを開発し, その制御可能な生成能力を得るために, 注釈付きNLGコーパスの大規模なセットで事前学習を行った。
FewShotWozとMulti-Domain-WOZデータセットの実験は、提案したSC-GPTが既存の手法を大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2020-02-27T18:48:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。