RectifiedHR: Enable Efficient High-Resolution Image Generation via Energy Rectification
- URL: http://arxiv.org/abs/2503.02537v2
- Date: Fri, 14 Mar 2025 13:40:17 GMT
- Title: RectifiedHR: Enable Efficient High-Resolution Image Generation via Energy Rectification
- Authors: Zhen Yang, Guibao Shen, Liang Hou, Mushui Liu, Luozhou Wang, Xin Tao, Pengfei Wan, Di Zhang, Ying-Cong Chen,
- Abstract summary: Diffusion models' performance declines when generating images at resolutions higher than those used during the training period.<n>We propose RectifiedHR, an efficient solution for training-free high-resolution image generation.<n>Our method is entirely training-free and boasts a simple implementation logic and efficient performance.
- Score: 30.683067011674556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have achieved remarkable advances in various image generation tasks. However, their performance notably declines when generating images at resolutions higher than those used during the training period. Despite the existence of numerous methods for producing high-resolution images, they either suffer from inefficiency or are hindered by complex operations. In this paper, we propose RectifiedHR, an straightforward and efficient solution for training-free high-resolution image generation. Specifically, we introduce the noise refresh strategy, which theoretically only requires a few lines of code to unlock the model's high-resolution generation ability and improve efficiency. Additionally, we first observe the phenomenon of energy decay that may cause image blurriness during the high-resolution image generation process. To address this issue, we introduce average latent energy analysis and discover that an improved classifier-free guidance hyperparameter can significantly enhance generation performance. Our method is entirely training-free and boasts a simple implementation logic and efficient performance. Through extensive comparisons with numerous baseline methods, our RectifiedHR demonstrates superior effectiveness and efficiency.
Related papers
- A Wavelet Diffusion GAN for Image Super-Resolution [7.986370916847687]
Diffusion models have emerged as a superior alternative to generative adversarial networks (GANs) for high-fidelity image generation.
However, their real-time feasibility is hindered by slow training and inference speeds.
This study proposes a wavelet-based conditional Diffusion GAN scheme for Single-Image Super-Resolution.
arXiv Detail & Related papers (2024-10-23T15:34:06Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
We design an effective diffusion transformer for image super-resolution (DiT-SR)
In practice, DiT-SR leverages an overall U-shaped architecture, and adopts a uniform isotropic design for all the transformer blocks.
We analyze the limitation of the widely used AdaLN, and present a frequency-adaptive time-step conditioning module.
arXiv Detail & Related papers (2024-09-29T07:14:16Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts.
Recent techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation.
We propose a time-aware diffusion distillation method, named TAD-SR, to accomplish effective and efficient image super-resolution.
arXiv Detail & Related papers (2024-08-14T11:47:22Z) - DiffuseHigh: Training-free Progressive High-Resolution Image Synthesis through Structure Guidance [11.44012694656102]
Large-scale generative models, such as text-to-image diffusion models, have garnered widespread attention across diverse domains.
Existing large-scale diffusion models are confined to generating images of up to 1K resolution.
We propose a novel progressive approach that fully utilizes generated low-resolution images to guide the generation of higher-resolution images.
arXiv Detail & Related papers (2024-06-26T16:10:31Z) - Efficient Degradation-aware Any Image Restoration [83.92870105933679]
We propose textitDaAIR, an efficient All-in-One image restorer employing a Degradation-aware Learner (DaLe) in the low-rank regime.
By dynamically allocating model capacity to input degradations, we realize an efficient restorer integrating holistic and specific learning.
arXiv Detail & Related papers (2024-05-24T11:53:27Z) - OmniSSR: Zero-shot Omnidirectional Image Super-Resolution using Stable Diffusion Model [6.83367289911244]
Omnidirectional images (ODIs) are commonly used in real-world visual tasks, and high-resolution ODIs help improve the performance of related visual tasks.
Most existing super-resolution methods for ODIs use end-to-end learning strategies, resulting in inferior realness of generated images.
arXiv Detail & Related papers (2024-04-16T06:39:37Z) - CoDi: Conditional Diffusion Distillation for Higher-Fidelity and Faster
Image Generation [49.3016007471979]
Large generative diffusion models have revolutionized text-to-image generation and offer immense potential for conditional generation tasks.
However, their widespread adoption is hindered by the high computational cost, which limits their real-time application.
We introduce a novel method dubbed CoDi, that adapts a pre-trained latent diffusion model to accept additional image conditioning inputs.
arXiv Detail & Related papers (2023-10-02T17:59:18Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
We propose an explicit solution to the COO problem, called Detail Enhanced Contrastive Loss (DECLoss)
DECLoss utilizes the clustering property of contrastive learning to directly reduce the variance of the potential high-resolution distribution.
We evaluate DECLoss on multiple super-resolution benchmarks and demonstrate that it improves the perceptual quality of PSNR-oriented models.
arXiv Detail & Related papers (2022-01-04T08:30:09Z) - A Generic Approach for Enhancing GANs by Regularized Latent Optimization [79.00740660219256]
We introduce a generic framework called em generative-model inference that is capable of enhancing pre-trained GANs effectively and seamlessly.
Our basic idea is to efficiently infer the optimal latent distribution for the given requirements using Wasserstein gradient flow techniques.
arXiv Detail & Related papers (2021-12-07T05:22:50Z) - A Simple Baseline for StyleGAN Inversion [133.5868210969111]
StyleGAN inversion plays an essential role in enabling the pretrained StyleGAN to be used for real facial image editing tasks.
Existing optimization-based methods can produce high quality results, but the optimization often takes a long time.
We present a new feed-forward network for StyleGAN inversion, with significant improvement in terms of efficiency and quality.
arXiv Detail & Related papers (2021-04-15T17:59:49Z) - Efficient texture-aware multi-GAN for image inpainting [5.33024001730262]
Recent GAN-based (Generative adversarial networks) inpainting methods show remarkable improvements.
We propose a multi-GAN architecture improving both the performance and rendering efficiency.
arXiv Detail & Related papers (2020-09-30T14:58:03Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
We propose a deep Super-Resolution Residual Convolutional Generative Adversarial Network (SRResCGAN)
It follows the real-world degradation settings by adversarial training the model with pixel-wise supervision in the HR domain from its generated LR counterpart.
The proposed network exploits the residual learning by minimizing the energy-based objective function with powerful image regularization and convex optimization techniques.
arXiv Detail & Related papers (2020-05-03T00:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.