論文の概要: Multimodal Deep Learning for Subtype Classification in Breast Cancer Using Histopathological Images and Gene Expression Data
- arxiv url: http://arxiv.org/abs/2503.02849v1
- Date: Tue, 04 Mar 2025 18:24:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:23:26.135454
- Title: Multimodal Deep Learning for Subtype Classification in Breast Cancer Using Histopathological Images and Gene Expression Data
- Title(参考訳): 病理組織像と遺伝子発現データを用いた乳癌サブタイプ分類のためのマルチモーダルディープラーニング
- Authors: Amin Honarmandi Shandiz,
- Abstract要約: 本稿では,乳がんをBRCAに分類する深層マルチモーダル学習フレームワークを提案する。
提案手法では,ResNet-50モデルを用いて画像の特徴抽出を行う。
本研究は, 乳がん亜型分類における深層学習の可能性を明らかにするものである。
- 参考スコア(独自算出の注目度): 0.28675177318965045
- License:
- Abstract: Molecular subtyping of breast cancer is crucial for personalized treatment and prognosis. Traditional classification approaches rely on either histopathological images or gene expression profiling, limiting their predictive power. In this study, we propose a deep multimodal learning framework that integrates histopathological images and gene expression data to classify breast cancer into BRCA.Luminal and BRCA.Basal / Her2 subtypes. Our approach employs a ResNet-50 model for image feature extraction and fully connected layers for gene expression processing, with a cross-attention fusion mechanism to enhance modality interaction. We conduct extensive experiments using five-fold cross-validation, demonstrating that our multimodal integration outperforms unimodal approaches in terms of classification accuracy, precision-recall AUC, and F1-score. Our findings highlight the potential of deep learning for robust and interpretable breast cancer subtype classification, paving the way for improved clinical decision-making.
- Abstract(参考訳): 乳がんの分子サブタイプは、パーソナライズされた治療と予後に不可欠である。
従来の分類手法は、組織像または遺伝子発現プロファイリングのいずれかに依存し、その予測能力を制限する。
本研究では,病理組織像と遺伝子発現データを統合し,乳癌をBRCA.LuminalおよびBRCA.Basal/Her2サブタイプに分類する深層多モード学習フレームワークを提案する。
本稿では,画像特徴抽出のためのResNet-50モデルと,遺伝子発現処理のための完全連結層と,モダリティ相互作用を強化するための相互注意融合機構を用いる。
我々は5倍のクロスバリデーションを用いた広範囲な実験を行い、分類精度、精度-リコールAUC、F1スコアの観点から、マルチモーダル統合が一様アプローチより優れていることを示した。
本研究は, 乳がんサブタイプ分類における深層学習の可能性を明らかにするとともに, 臨床的意思決定の改善への道を開くことを目的とした。
関連論文リスト
- FECT: Classification of Breast Cancer Pathological Images Based on Fusion Features [1.9356426053533178]
We propose a novel breast cancer tissue classification model that fused features of Edges, Cells, and tissues (FECT)。
我々のモデルは、分類精度とF1スコアの観点から、現在の高度な手法を超越している。
本モデルは解釈可能性を示し,今後の臨床応用において重要な役割を担っている。
論文 参考訳(メタデータ) (2025-01-17T11:32:33Z) - Pathology-genomic fusion via biologically informed cross-modality graph learning for survival analysis [7.996257103473235]
そこで我々は,全スライド画像(WSI)とバルクRNA-Seq発現データと異種グラフニューラルネットワークを統合したPGHG(Pathology-Genome Heterogeneous Graph)を提案する。
PGHGは生物学的知識誘導表現学習ネットワークと病理ゲノム不均一グラフから構成される。
腫瘍ゲノムアトラスの低悪性度グリオーマ,グリオーマ,腎乳頭状細胞癌データセットについて検討した。
論文 参考訳(メタデータ) (2024-04-11T09:07:40Z) - Histo-Genomic Knowledge Distillation For Cancer Prognosis From Histopathology Whole Slide Images [7.5123289730388825]
ゲノムインフォームドハイパーアテンションネットワーク(G-HANet)は、トレーニング中にヒストリーゲノム知識を効果的に蒸留することができる。
ネットワークは、クロスモーダル・アソシエーション・ブランチ(CAB)とハイパーアテンション・サバイバル・ブランチ(HSB)から構成される。
論文 参考訳(メタデータ) (2024-03-15T06:20:09Z) - MM-SurvNet: Deep Learning-Based Survival Risk Stratification in Breast
Cancer Through Multimodal Data Fusion [18.395418853966266]
乳がん生存リスク階層化のための新しい深層学習手法を提案する。
画像特徴抽出には視覚変換器、特にMaxViTモデルを使用し、患者レベルでの複雑な画像関係のキャプチャには自己注意を用いる。
二重クロスアテンション機構はこれらの特徴を遺伝データと融合させ、臨床データを最終層に組み込んで予測精度を高める。
論文 参考訳(メタデータ) (2024-02-19T02:31:36Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
同症例のCT像と病理像との間には,画像パターンに大規模な関連性が存在する。
肺がんサブタイプをCT画像上で正確に分類するための自己生成型ハイブリッド機能ネットワーク(SGHF-Net)を提案する。
論文 参考訳(メタデータ) (2023-08-09T02:04:05Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
深層学習モデルを用いた乳癌に対する臨床支援の強化について検討した。
我々は、体積畳み込みニューラルネットワークを利用して、前処理コホートから深い放射能特徴を学習する。
提案手法は, グレードと処理後応答予測の両方において, より良い性能を実現することができる。
論文 参考訳(メタデータ) (2022-11-10T03:02:12Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
臨床皮膚画像から機械学習に基づく悪性度予測と病変の同定を検討する。
まず, サブタイプや悪性度に関わらず画像に存在するすべての病変を同定し, その悪性度を推定し, 凝集により, 画像レベルの悪性度も生成する。
論文 参考訳(メタデータ) (2021-04-02T20:52:05Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。