論文の概要: Hyperspectral Image Restoration and Super-resolution with Physics-Aware Deep Learning for Biomedical Applications
- arxiv url: http://arxiv.org/abs/2503.02908v1
- Date: Mon, 03 Mar 2025 17:23:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:51:23.009778
- Title: Hyperspectral Image Restoration and Super-resolution with Physics-Aware Deep Learning for Biomedical Applications
- Title(参考訳): バイオメディカル応用のための物理応用深層学習によるハイパースペクトル画像復元と超解像
- Authors: Yuchen Xiang, Zhaolu Liu, Monica Emili Garcia-Segura, Daniel Simon, Boxuan Cao, Vincen Wu, Kenneth Robinson, Yu Wang, Ronan Battle, Robert T. Murray, Xavier Altafaj, Luca Peruzzotti-Jametti, Zoltan Takats,
- Abstract要約: 本稿では,事前知識を伴わずに画素分割後の解像度を復元し,向上する深層学習に基づくアプローチを提案する。
画像モデルと整合した計測値を用いて微調整を行い,16倍の超分解能向上と12倍の撮像速度向上を実現した。
すべてのメソッドは、GitHub上のオープンソースソフトウェアとして利用できる。
- 参考スコア(独自算出の注目度): 1.5227564673552003
- License:
- Abstract: Hyperspectral imaging is a powerful bioimaging tool which can uncover novel insights, thanks to its sensitivity to the intrinsic properties of materials. However, this enhanced contrast comes at the cost of system complexity, constrained by an inherent trade-off between spatial resolution, spectral resolution, and imaging speed. To overcome this limitation, we present a deep learning-based approach that restores and enhances pixel resolution post-acquisition without any a priori knowledge. Fine-tuned using metrics aligned with the imaging model, our physics-aware method achieves a 16X pixel super-resolution enhancement and a 12X imaging speedup without the need of additional training data for transfer learning. Applied to both synthetic and experimental data from five different sample types, we demonstrate that the model preserves biological integrity, ensuring no features are lost or hallucinated. We also concretely demonstrate the model's ability to reveal disease-associated metabolic changes in Downs syndrome that would otherwise remain undetectable. Furthermore, we provide physical insights into the inner workings of the model, paving the way for future refinements that could potentially surpass instrumental limits in an explainable manner. All methods are available as open-source software on GitHub.
- Abstract(参考訳): ハイパースペクトルイメージングは、材料の本質的な性質に敏感なため、新しい知見を発見できる強力なバイオイメージングツールである。
しかし、この拡張されたコントラストは、空間分解能、スペクトル分解能、撮像速度のトレードオフによって制約される、システムの複雑さのコストが伴う。
この制限を克服するために,先行知識のない画素分割後の解像度を復元し,向上する深層学習に基づくアプローチを提案する。
画像モデルに適合した計測値を用いて微調整を行い, 物理認識法により, トランスファー学習のための追加トレーニングデータを必要としない16画素超高解像度化と12倍高速化を実現した。
5種類の試料から得られた合成データと実験データに応用して, モデルが生物の健全性を保ち, 特徴の喪失や幻覚を確実にすることを示した。
また,Downs症候群における疾患関連代謝変化が検出不能のままであることを示すためのモデルの有用性を具体的に示す。
さらに、モデルの内部動作に関する物理的な洞察を提供し、説明可能な方法で楽器の限界を超える可能性がある将来の改善への道を開く。
すべてのメソッドは、GitHub上のオープンソースソフトウェアとして利用できる。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - HistoSPACE: Histology-Inspired Spatial Transcriptome Prediction And Characterization Engine [0.0]
HistoSPACEモデルは、STデータで利用可能な組織像の多様性を調べ、組織像から分子的洞察を抽出する。
モデルは、現代のアルゴリズムと比較して大きな効率性を示し、残余のクロスバリデーションにおいて0.56の相関関係を示す。
論文 参考訳(メタデータ) (2024-08-07T07:12:52Z) - Paired Diffusion: Generation of related, synthetic PET-CT-Segmentation scans using Linked Denoising Diffusion Probabilistic Models [0.0]
本研究では,複数のPET-CT-腫瘍マスクペアをペアネットワークと条件エンコーダを用いて生成できる新しいアーキテクチャを提案する。
我々のアプローチには、DDPMサンプリング一貫性を改善するための革新的で時間的なステップ制御機構とノイズ探索戦略が含まれる。
論文 参考訳(メタデータ) (2024-03-26T14:21:49Z) - ScaleCrafter: Tuning-free Higher-Resolution Visual Generation with
Diffusion Models [126.35334860896373]
本研究では,事前学習した拡散モデルから,トレーニング画像サイズよりもはるかに高解像度で画像を生成する能力について検討する。
注意ベースや共同拡散アプローチのような、高分解能な生成のための既存の研究は、これらの問題にうまく対処できない。
本稿では,推論中の畳み込み知覚場を動的に調整できる簡易かつ効果的な再拡張法を提案する。
論文 参考訳(メタデータ) (2023-10-11T17:52:39Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
本稿では,自由視点画像の合成に有効なフレームワークであるGeneralizable Model-based Neural Radiance Fieldsを提案する。
具体的には、多視点2D画像からの出現コードを幾何学的プロキシに登録するための幾何学誘導型アテンション機構を提案する。
論文 参考訳(メタデータ) (2023-03-24T03:32:02Z) - Feature Representation Learning for Robust Retinal Disease Detection
from Optical Coherence Tomography Images [0.0]
眼科画像は、異なる網膜変性疾患を区別する自動化技術で失敗する、同一の外観の病理を含んでいる可能性がある。
本研究では,3つの学習ヘッドを持つ堅牢な疾患検出アーキテクチャを提案する。
2つのOCTデータセットによる実験結果から,提案モデルが既存の最先端モデルよりも精度,解釈可能性,堅牢性に優れ,網膜外網膜疾患の検出に有用であることが示唆された。
論文 参考訳(メタデータ) (2022-06-24T07:59:36Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Deep Learning Approach for Hyperspectral Image Demosaicking, Spectral
Correction and High-resolution RGB Reconstruction [3.0478210530038443]
教師付き学習手法を用いたハイパースペクトル画像のスナップショット化のための深層学習に基づく画像復号アルゴリズムを提案する。
医用画像が公開されていないため,既存の医用画像データセットからのスナップショット画像をシミュレートする合成画像生成手法が提案されている。
得られたデシック画像は定量的かつ質的に評価され、画像品質の明確な改善が示される。
論文 参考訳(メタデータ) (2021-09-03T09:50:03Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Multi-Disease Detection in Retinal Imaging based on Ensembling
Heterogeneous Deep Learning Models [0.0]
網膜イメージングのための革新的なマルチディセーゼ検出パイプラインを提案する。
当社のパイプラインには、転送学習、クラス重み付け、リアルタイム画像増強、焦点損失利用などの最先端の戦略が含まれます。
論文 参考訳(メタデータ) (2021-03-26T18:02:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。