論文の概要: Towards Effective and Sparse Adversarial Attack on Spiking Neural Networks via Breaking Invisible Surrogate Gradients
- arxiv url: http://arxiv.org/abs/2503.03272v2
- Date: Thu, 06 Mar 2025 13:49:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 12:14:27.861977
- Title: Towards Effective and Sparse Adversarial Attack on Spiking Neural Networks via Breaking Invisible Surrogate Gradients
- Title(参考訳): 可視的サロゲート勾配を破るニューラルネットワークの効果的かつスパースな攻撃に向けて
- Authors: Li Lun, Kunyu Feng, Qinglong Ni, Ling Liang, Yuan Wang, Ying Li, Dunshan Yu, Xiaoxin Cui,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、勾配に基づく敵攻撃に対して脆弱である。
本稿では,SGとモデル間のロバストな接続を確立するために,革新的な電位依存サロゲート勾配(PDSG)法を提案する。
また,バイナリダイナミックイメージを効果的に攻撃するためのスパースダイナミックアタック(SDA)を提案する。
- 参考スコア(独自算出の注目度): 13.489843266719896
- License:
- Abstract: Spiking neural networks (SNNs) have shown their competence in handling spatial-temporal event-based data with low energy consumption. Similar to conventional artificial neural networks (ANNs), SNNs are also vulnerable to gradient-based adversarial attacks, wherein gradients are calculated by spatial-temporal back-propagation (STBP) and surrogate gradients (SGs). However, the SGs may be invisible for an inference-only model as they do not influence the inference results, and current gradient-based attacks are ineffective for binary dynamic images captured by the dynamic vision sensor (DVS). While some approaches addressed the issue of invisible SGs through universal SGs, their SGs lack a correlation with the victim model, resulting in sub-optimal performance. Moreover, the imperceptibility of existing SNN-based binary attacks is still insufficient. In this paper, we introduce an innovative potential-dependent surrogate gradient (PDSG) method to establish a robust connection between the SG and the model, thereby enhancing the adaptability of adversarial attacks across various models with invisible SGs. Additionally, we propose the sparse dynamic attack (SDA) to effectively attack binary dynamic images. Utilizing a generation-reduction paradigm, SDA can fully optimize the sparsity of adversarial perturbations. Experimental results demonstrate that our PDSG and SDA outperform state-of-the-art SNN-based attacks across various models and datasets. Specifically, our PDSG achieves 100% attack success rate on ImageNet, and our SDA obtains 82% attack success rate by modifying only 0.24% of the pixels on CIFAR10DVS. The code is available at https://github.com/ryime/PDSG-SDA .
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、空間時間イベントベースのデータを低消費電力で処理する能力を示している。
従来の人工ニューラルネットワーク(ANN)と同様に、SNNは勾配に基づく敵攻撃にも脆弱であり、その勾配は時空間バックプロパゲーション(STBP)と代理勾配(SG)によって計算される。
しかし、SGは推論結果に影響しないため、推論のみのモデルでは見えず、現在の勾配に基づく攻撃は動的視覚センサ(DVS)が捉えたバイナリダイナミックイメージには効果がない。
普遍的なSGを通して見えないSGの問題に対処するアプローチもあるが、それらのSGは犠牲者モデルと相関がなく、結果として準最適性能が得られた。
さらに、既存のSNNベースのバイナリアタックの非許容性は依然として不十分である。
本稿では,SGとモデル間のロバストな接続を確立するために,革新的な電位依存性サロゲート勾配(PDSG)法を導入する。
さらに,バイナリダイナミックイメージを効果的に攻撃するためのスパースダイナミックアタック(SDA)を提案する。
世代還元パラダイムを用いることで、SDAは敵の摂動の空間性を完全に最適化することができる。
実験の結果,PDSGとSDAは,様々なモデルやデータセットに対して,最先端のSNNベースの攻撃よりも優れていた。
具体的には、当社のPSDGは、ImageNet上で100%の攻撃成功率を達成するとともに、CIFAR10DVS上のピクセルの0.24%だけを修正して82%の攻撃成功率を得る。
コードはhttps://github.com/ryime/PDSG-SDA で公開されている。
関連論文リスト
- HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
ヘテロジニアスグラフニューラルネットワーク(HGNN)は、Webやeコマースなどの分野でのパフォーマンスでますます認識されている。
本稿ではヘテロジニアスグラフに対する最初の専用グレーボックス回避手法であるHGAttackを紹介する。
論文 参考訳(メタデータ) (2024-01-18T12:47:13Z) - Spear and Shield: Adversarial Attacks and Defense Methods for
Model-Based Link Prediction on Continuous-Time Dynamic Graphs [40.01361505644007]
本稿では,連続時間動的グラフ上でのリンク予測のための,単純かつ効果的な逆攻撃手法T-SPEARを提案する。
本稿では,T-SPEARがリンク予測タスクにおいて,被害者モデルの性能を著しく低下させることを示す。
我々の攻撃は他のTGNNに転送可能であり、攻撃者が想定する被害者モデルとは異なる。
論文 参考訳(メタデータ) (2023-08-21T15:09:51Z) - Membrane Potential Distribution Adjustment and Parametric Surrogate
Gradient in Spiking Neural Networks [3.485537704990941]
この問題を回避し、SNNをゼロから訓練するために、SG戦略を調査し、適用した。
パラメトリックサロゲート勾配(PSG)法を提案し,SGを反復的に更新し,最終的に最適なサロゲート勾配パラメータを決定する。
実験結果から,提案手法は時間によるバックプロパゲーション(BPTT)アルゴリズムと容易に統合可能であることが示された。
論文 参考訳(メタデータ) (2023-04-26T05:02:41Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Safety-compliant Generative Adversarial Networks for Human Trajectory
Forecasting [95.82600221180415]
群衆における人間予測は、社会的相互作用をモデル化し、衝突のないマルチモーダル分布を出力するという課題を提示する。
SGANv2は、動き時間相互作用モデリングと変圧器に基づく識別器設計を備えた安全に配慮したSGANアーキテクチャである。
論文 参考訳(メタデータ) (2022-09-25T15:18:56Z) - TSFool: Crafting Highly-Imperceptible Adversarial Time Series through Multi-Objective Attack [6.243453526766042]
TSFoolと呼ばれる効率的な手法を提案する。
中心となる考え方は、「カモフラージュ係数」(Camouflage Coefficient)と呼ばれる新しい大域的な最適化目標であり、クラス分布から反対サンプルの非受容性を捉えるものである。
11のUCRデータセットとUEAデータセットの実験では、TSFoolは6つのホワイトボックスと3つのブラックボックスベンチマークアタックを著しく上回っている。
論文 参考訳(メタデータ) (2022-09-14T03:02:22Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - HIRE-SNN: Harnessing the Inherent Robustness of Energy-Efficient Deep
Spiking Neural Networks by Training with Crafted Input Noise [13.904091056365765]
SNNトレーニングアルゴリズムは,入力ノイズを発生させるとともに,追加のトレーニング時間も発生しない。
通常の訓練された直接入力SNNと比較して、トレーニングされたモデルでは、最大13.7%の分類精度が向上した。
また,本モデルでは,レートコード入力を学習したSNNに対して,攻撃生成画像の分類性能が向上あるいは類似していることが特筆すべき点である。
論文 参考訳(メタデータ) (2021-10-06T16:48:48Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
生成的ベースの敵攻撃は、この制限を取り除くことができる。
ASymmetric Saliency-based Auto-Encoder (SSAE) は摂動を生成する。
SSAEが生成した敵の例は、広く使われているモデルを崩壊させるだけでなく、優れた視覚的品質を実現する。
論文 参考訳(メタデータ) (2021-07-20T01:55:21Z) - Towards Robust Neural Networks via Orthogonal Diversity [30.77473391842894]
敵の訓練とその変種に代表される一連の手法は、ディープニューラルネットワークの堅牢性を高める最も効果的な手法の1つとして証明されている。
本稿では, 多様な入力に適応する特徴を学習するために, モデルの拡張を目的とした新しい防御手法を提案する。
このようにして、提案したDIOは、これらの相互直交経路によって学習された特徴を補正できるため、モデルを強化し、DNN自体の堅牢性を高める。
論文 参考訳(メタデータ) (2020-10-23T06:40:56Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。