論文の概要: Membrane Potential Distribution Adjustment and Parametric Surrogate
Gradient in Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2304.13289v1
- Date: Wed, 26 Apr 2023 05:02:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 15:28:32.158008
- Title: Membrane Potential Distribution Adjustment and Parametric Surrogate
Gradient in Spiking Neural Networks
- Title(参考訳): スパイキングニューラルネットワークにおける膜電位分布調整とパラメトリックサーロゲート勾配
- Authors: Siqi Wang, Tee Hiang Cheng, Meng-Hiot Lim
- Abstract要約: この問題を回避し、SNNをゼロから訓練するために、SG戦略を調査し、適用した。
パラメトリックサロゲート勾配(PSG)法を提案し,SGを反復的に更新し,最終的に最適なサロゲート勾配パラメータを決定する。
実験結果から,提案手法は時間によるバックプロパゲーション(BPTT)アルゴリズムと容易に統合可能であることが示された。
- 参考スコア(独自算出の注目度): 3.485537704990941
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As an emerging network model, spiking neural networks (SNNs) have aroused
significant research attentions in recent years. However, the energy-efficient
binary spikes do not augur well with gradient descent-based training
approaches. Surrogate gradient (SG) strategy is investigated and applied to
circumvent this issue and train SNNs from scratch. Due to the lack of
well-recognized SG selection rule, most SGs are chosen intuitively. We propose
the parametric surrogate gradient (PSG) method to iteratively update SG and
eventually determine an optimal surrogate gradient parameter, which calibrates
the shape of candidate SGs. In SNNs, neural potential distribution tends to
deviate unpredictably due to quantization error. We evaluate such potential
shift and propose methodology for potential distribution adjustment (PDA) to
minimize the loss of undesired pre-activations. Experimental results
demonstrate that the proposed methods can be readily integrated with
backpropagation through time (BPTT) algorithm and help modulated SNNs to
achieve state-of-the-art performance on both static and dynamic dataset with
fewer timesteps.
- Abstract(参考訳): 新たなネットワークモデルとして、スパイクニューラルネットワーク(SNN)が近年大きな研究注目を集めている。
しかし、エネルギー効率の良い二元スパイクは勾配勾配に基づくトレーニングアプローチではうまく機能しない。
surrogate gradient (sg) 戦略について検討し,この問題を回避し,snsをスクラッチから切り離すために適用した。
認識されたSG選択規則がないため、ほとんどのSGは直感的に選択される。
パラメトリックサロゲート勾配(PSG)法を用いてSGを反復的に更新し,最終的には候補SGの形状を校正する最適なサロゲート勾配パラメータを決定する。
SNNでは、量子化誤差により神経電位分布が予測不能にずれる傾向がある。
このようなポテンシャルシフトを評価し、望ましくない事前活性化の損失を最小限に抑えるために、潜在的分布調整(PDA)手法を提案する。
実験結果から,提案手法は時間によるバックプロパゲーション(BPTT)アルゴリズムと容易に統合でき,SNNを変調することで,より少ない時間ステップで静的および動的データセット上での最先端性能を実現することができることがわかった。
関連論文リスト
- Randomized Forward Mode Gradient for Spiking Neural Networks in Scientific Machine Learning [4.178826560825283]
スパイキングニューラルネットワーク(SNN)は、ディープニューラルネットワークの階層的学習能力とスパイクベースの計算のエネルギー効率を組み合わせた、機械学習における有望なアプローチである。
SNNの伝統的なエンドツーエンドトレーニングは、しばしばバックプロパゲーションに基づいており、重み更新はチェーンルールによって計算された勾配から導かれる。
この手法は, 生体適合性に限界があり, ニューロモルフィックハードウェアの非効率性のため, 課題に遭遇する。
本研究では,SNNの代替トレーニング手法を導入する。後方伝搬の代わりに,前方モード内での重量摂動手法を活用する。
論文 参考訳(メタデータ) (2024-11-11T15:20:54Z) - Directly Training Temporal Spiking Neural Network with Sparse Surrogate Gradient [8.516243389583702]
脳にインスパイアされたスパイキングニューラルネットワーク(SNN)は、イベントベースのコンピューティングとエネルギー効率の良い機能によって、多くの注目を集めている。
本研究では,SNNの一般化能力を向上させるため,MSG(Masked Surrogate Gradients)を提案する。
論文 参考訳(メタデータ) (2024-06-28T04:21:32Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
本稿では,アルゴリズム安定性の概念を活用して,浅層ニューラルネットワーク(SNN)の一般化挙動について検討する。
我々は、SNNを訓練するために勾配降下(GD)と勾配降下(SGD)を考慮する。
論文 参考訳(メタデータ) (2022-09-19T18:48:00Z) - Learning with Local Gradients at the Edge [14.94491070863641]
我々は、Target Projection Gradient Descent (tpSGD) と呼ばれる新しいバックプロパゲーションフリー最適化アルゴリズムを提案する。
tpSGDは、任意の損失関数を扱うために、直接ランダムターゲット射影を一般化する。
我々は、深層ニューラルネットワークのトレーニングにおけるtpSGDの性能を評価し、マルチ層RNNへのアプローチを拡張した。
論文 参考訳(メタデータ) (2022-08-17T19:51:06Z) - Differentially private training of neural networks with Langevin
dynamics forcalibrated predictive uncertainty [58.730520380312676]
その結果,DP-SGD(差分偏差勾配勾配勾配勾配勾配)は,低校正・過信深層学習モデルが得られることがわかった。
これは、医療診断など、安全クリティカルな応用にとって深刻な問題である。
論文 参考訳(メタデータ) (2021-07-09T08:14:45Z) - A Biased Graph Neural Network Sampler with Near-Optimal Regret [57.70126763759996]
グラフニューラルネットワーク(GNN)は、グラフおよびリレーショナルデータにディープネットワークアーキテクチャを適用する手段として登場した。
本論文では,既存の作業に基づいて,GNN近傍サンプリングをマルチアームバンディット問題として扱う。
そこで本研究では,分散を低減し,不安定かつ非限定的な支払いを回避すべく設計されたバイアスをある程度導入した報酬関数を提案する。
論文 参考訳(メタデータ) (2021-03-01T15:55:58Z) - Bayesian Graph Neural Networks with Adaptive Connection Sampling [62.51689735630133]
グラフニューラルネットワーク(GNN)における適応接続サンプリングのための統一的なフレームワークを提案する。
提案フレームワークは,深部GNNの過度なスムース化や過度に適合する傾向を緩和するだけでなく,グラフ解析タスクにおけるGNNによる不確実性の学習を可能にする。
論文 参考訳(メタデータ) (2020-06-07T07:06:35Z) - Stochastic Graph Neural Networks [123.39024384275054]
グラフニューラルネットワーク(GNN)は、分散エージェント調整、制御、計画に応用したグラフデータの非線形表現をモデル化する。
現在のGNNアーキテクチャは理想的なシナリオを前提として,環境やヒューマンファクタ,あるいは外部攻撃によるリンク変動を無視している。
これらの状況において、GNNは、トポロジカルなランダム性を考慮していない場合、その分散タスクに対処することができない。
論文 参考訳(メタデータ) (2020-06-04T08:00:00Z) - Semi-Implicit Back Propagation [1.5533842336139065]
ニューラルネットワークトレーニングのための半単純バック伝搬法を提案する。
ニューロンの差は後方方向に伝播し、パラメータは近位写像で更新される。
MNISTとCIFAR-10の両方の実験により、提案アルゴリズムは損失減少とトレーニング/検証の精度の両方において、より良い性能をもたらすことが示された。
論文 参考訳(メタデータ) (2020-02-10T03:26:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。