Generative Diffusion Model-based Compression of MIMO CSI
- URL: http://arxiv.org/abs/2503.03753v1
- Date: Fri, 07 Feb 2025 02:24:12 GMT
- Title: Generative Diffusion Model-based Compression of MIMO CSI
- Authors: Heasung Kim, Taekyun Lee, Hyeji Kim, Gustavo De Veciana, Mohamed Amine Arfaoui, Asil Koc, Phil Pietraski, Guodong Zhang, John Kaewell,
- Abstract summary: Experimental results show that our method significantly outperforms existing CSI compression algorithms.<n>These findings underscore the potential of diffusion-based compression for practical deployment in communication systems.
- Score: 17.15101539701981
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While neural lossy compression techniques have markedly advanced the efficiency of Channel State Information (CSI) compression and reconstruction for feedback in MIMO communications, efficient algorithms for more challenging and practical tasks-such as CSI compression for future channel prediction and reconstruction with relevant side information-remain underexplored, often resulting in suboptimal performance when existing methods are extended to these scenarios. To that end, we propose a novel framework for compression with side information, featuring an encoding process with fixed-rate compression using a trainable codebook for codeword quantization, and a decoding procedure modeled as a backward diffusion process conditioned on both the codeword and the side information. Experimental results show that our method significantly outperforms existing CSI compression algorithms, often yielding over twofold performance improvement by achieving comparable distortion at less than half the data rate of competing methods in certain scenarios. These findings underscore the potential of diffusion-based compression for practical deployment in communication systems.
Related papers
- Hierarchical Semantic Compression for Consistent Image Semantic Restoration [62.97519327310638]
We propose a novel hierarchical semantic compression (HSC) framework that purely operates within intrinsic semantic spaces from generative models.
Experimental results demonstrate that the proposed HSC framework achieves the state-of-the-art performance on subjective quality and consistency for human vision.
arXiv Detail & Related papers (2025-02-24T03:20:44Z) - CALLIC: Content Adaptive Learning for Lossless Image Compression [64.47244912937204]
CALLIC sets a new state-of-the-art (SOTA) for learned lossless image compression.<n>We propose a content-aware autoregressive self-attention mechanism by leveraging convolutional gating operations.<n>During encoding, we decompose pre-trained layers, including depth-wise convolutions, using low-rank matrices and then adapt the incremental weights on testing image by Rate-guided Progressive Fine-Tuning (RPFT)<n>RPFT fine-tunes with gradually increasing patches that are sorted in descending order by estimated entropy, optimizing learning process and reducing adaptation time.
arXiv Detail & Related papers (2024-12-23T10:41:18Z) - Channel-wise Feature Decorrelation for Enhanced Learned Image Compression [16.638869231028437]
The emerging Learned Compression (LC) replaces the traditional modules with Deep Neural Networks (DNN), which are trained end-to-end for rate-distortion performance.
This paper proposes to improve compression by fully exploiting the existing DNN capacity.
Three strategies are proposed and evaluated, which optimize (1) the transformation network, (2) the context model, and (3) both networks.
arXiv Detail & Related papers (2024-03-16T14:30:25Z) - Unifying Generation and Compression: Ultra-low bitrate Image Coding Via
Multi-stage Transformer [35.500720262253054]
This paper introduces a novel Unified Image Generation-Compression (UIGC) paradigm, merging the processes of generation and compression.
A key feature of the UIGC framework is the adoption of vector-quantized (VQ) image models for tokenization.
Experiments demonstrate the superiority of the proposed UIGC framework over existing codecs in perceptual quality and human perception.
arXiv Detail & Related papers (2024-03-06T14:27:02Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
We propose a learned video compression framework via heterogeneous deformable compensation strategy (HDCVC) to tackle the problems of unstable compression performance.
More specifically, the proposed algorithm extracts features from the two adjacent frames to estimate content-Neighborhood heterogeneous deformable (HetDeform) kernel offsets.
Experimental results indicate that HDCVC achieves superior performance than the recent state-of-the-art learned video compression approaches.
arXiv Detail & Related papers (2022-07-11T02:31:31Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Efficient Data Compression for 3D Sparse TPC via Bicephalous
Convolutional Autoencoder [8.759778406741276]
This work introduces a dual-head autoencoder to resolve sparsity and regression simultaneously, called textitBicephalous Convolutional AutoEncoder (BCAE)
It shows advantages both in compression fidelity and ratio compared to traditional data compression methods, such as MGARD, SZ, and ZFP.
arXiv Detail & Related papers (2021-11-09T21:26:37Z) - Feedback Recurrent Autoencoder for Video Compression [14.072596106425072]
We propose a new network architecture for learned video compression operating in low latency mode.
Our method yields state of the art MS-SSIM/rate performance on the high-resolution UVG dataset.
arXiv Detail & Related papers (2020-04-09T02:58:07Z) - Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle [117.95823660228537]
We propose a novel structured sparsification method for efficient network compression.
The proposed method automatically induces structured sparsity on the convolutional weights.
We also address the problem of inter-group communication with a learnable channel shuffle mechanism.
arXiv Detail & Related papers (2020-02-19T12:03:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.