Channel-wise Feature Decorrelation for Enhanced Learned Image Compression
- URL: http://arxiv.org/abs/2403.10936v1
- Date: Sat, 16 Mar 2024 14:30:25 GMT
- Title: Channel-wise Feature Decorrelation for Enhanced Learned Image Compression
- Authors: Farhad Pakdaman, Moncef Gabbouj,
- Abstract summary: The emerging Learned Compression (LC) replaces the traditional modules with Deep Neural Networks (DNN), which are trained end-to-end for rate-distortion performance.
This paper proposes to improve compression by fully exploiting the existing DNN capacity.
Three strategies are proposed and evaluated, which optimize (1) the transformation network, (2) the context model, and (3) both networks.
- Score: 16.638869231028437
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emerging Learned Compression (LC) replaces the traditional codec modules with Deep Neural Networks (DNN), which are trained end-to-end for rate-distortion performance. This approach is considered as the future of image/video compression, and major efforts have been dedicated to improving its compression efficiency. However, most proposed works target compression efficiency by employing more complex DNNS, which contributes to higher computational complexity. Alternatively, this paper proposes to improve compression by fully exploiting the existing DNN capacity. To do so, the latent features are guided to learn a richer and more diverse set of features, which corresponds to better reconstruction. A channel-wise feature decorrelation loss is designed and is integrated into the LC optimization. Three strategies are proposed and evaluated, which optimize (1) the transformation network, (2) the context model, and (3) both networks. Experimental results on two established LC methods show that the proposed method improves the compression with a BD-Rate of up to 8.06%, with no added complexity. The proposed solution can be applied as a plug-and-play solution to optimize any similar LC method.
Related papers
- Compression-Realized Deep Structural Network for Video Quality Enhancement [78.13020206633524]
This paper focuses on the task of quality enhancement for compressed videos.
Most of the existing methods lack a structured design to optimally leverage the priors within compression codecs.
A new paradigm is urgently needed for a more conscious'' process of quality enhancement.
arXiv Detail & Related papers (2024-05-10T09:18:17Z) - Accelerating Distributed Deep Learning using Lossless Homomorphic
Compression [17.654138014999326]
We introduce a novel compression algorithm that effectively merges worker-level compression with in-network aggregation.
We show up to a 6.33$times$ improvement in aggregation throughput and a 3.74$times$ increase in per-iteration training speed.
arXiv Detail & Related papers (2024-02-12T09:57:47Z) - Perceptual Learned Image Compression via End-to-End JND-Based
Optimization [15.173265255635219]
Emerging Learned image Compression (LC) achieves significant improvements in coding efficiency by end-to-end training of neural networks for compression.
Perceptual optimization of LC to comply with the Human Visual System (HVS) is among such criteria, which has not been fully explored yet.
This paper proposes a novel framework to integrate Just Noticeable Distortion (JND) principles into LC.
arXiv Detail & Related papers (2024-02-05T09:45:38Z) - Towards Optimal Compression: Joint Pruning and Quantization [1.191194620421783]
This paper introduces FITCompress, a novel method integrating layer-wise mixed-precision quantization and unstructured pruning.
Experiments on computer vision and natural language processing benchmarks demonstrate that our proposed approach achieves a superior compression-performance trade-off.
arXiv Detail & Related papers (2023-02-15T12:02:30Z) - L-GreCo: Layerwise-Adaptive Gradient Compression for Efficient and
Accurate Deep Learning [24.712888488317816]
We provide a framework for adapting the degree of compression across the model's layers dynamically during training.
Our framework, called L-GreCo, is based on an adaptive algorithm, which automatically picks the optimal compression parameters for model layers.
arXiv Detail & Related papers (2022-10-31T14:37:41Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
We propose a learned video compression framework via heterogeneous deformable compensation strategy (HDCVC) to tackle the problems of unstable compression performance.
More specifically, the proposed algorithm extracts features from the two adjacent frames to estimate content-Neighborhood heterogeneous deformable (HetDeform) kernel offsets.
Experimental results indicate that HDCVC achieves superior performance than the recent state-of-the-art learned video compression approaches.
arXiv Detail & Related papers (2022-07-11T02:31:31Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
We propose a Collaborative Compression scheme, which joints channel pruning and tensor decomposition to compress CNN models.
We achieve 52.9% FLOPs reduction by removing 48.4% parameters on ResNet-50 with only a Top-1 accuracy drop of 0.56% on ImageNet 2012.
arXiv Detail & Related papers (2021-05-24T12:07:38Z) - Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle [117.95823660228537]
We propose a novel structured sparsification method for efficient network compression.
The proposed method automatically induces structured sparsity on the convolutional weights.
We also address the problem of inter-group communication with a learnable channel shuffle mechanism.
arXiv Detail & Related papers (2020-02-19T12:03:10Z) - End-to-End Facial Deep Learning Feature Compression with Teacher-Student
Enhancement [57.18801093608717]
We propose a novel end-to-end feature compression scheme by leveraging the representation and learning capability of deep neural networks.
In particular, the extracted features are compactly coded in an end-to-end manner by optimizing the rate-distortion cost.
We verify the effectiveness of the proposed model with the facial feature, and experimental results reveal better compression performance in terms of rate-accuracy.
arXiv Detail & Related papers (2020-02-10T10:08:44Z) - A Unified End-to-End Framework for Efficient Deep Image Compression [35.156677716140635]
We propose a unified framework called Efficient Deep Image Compression (EDIC) based on three new technologies.
Specifically, we design an auto-encoder style network for learning based image compression.
Our EDIC method can also be readily incorporated with the Deep Video Compression (DVC) framework to further improve the video compression performance.
arXiv Detail & Related papers (2020-02-09T14:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.