Pretrained LLMs as Real-Time Controllers for Robot Operated Serial Production Line
- URL: http://arxiv.org/abs/2503.03889v1
- Date: Wed, 05 Mar 2025 20:43:49 GMT
- Title: Pretrained LLMs as Real-Time Controllers for Robot Operated Serial Production Line
- Authors: Muhammad Waseem, Kshitij Bhatta, Chen Li, Qing Chang,
- Abstract summary: This work investigates the feasibility of using Large Language Models (LLMs), particularly GPT-4, as a straightforward, adaptable solution for controlling manufacturing systems, specifically, mobile robot scheduling.<n>We introduce an LLM-based control framework to assign mobile robots to different machines in robot assisted serial production lines, evaluating its performance in terms of system throughput.<n>While it achieves performance that is on par with state-of-the-art methods like Multi-Agent Reinforcement Learning (MARL), it offers a distinct advantage by delivering comparable throughput without the need for extensive retraining.
- Score: 5.647265893402412
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The manufacturing industry is undergoing a transformative shift, driven by cutting-edge technologies like 5G, AI, and cloud computing. Despite these advancements, effective system control, which is crucial for optimizing production efficiency, remains a complex challenge due to the intricate, knowledge-dependent nature of manufacturing processes and the reliance on domain-specific expertise. Conventional control methods often demand heavy customization, considerable computational resources, and lack transparency in decision-making. In this work, we investigate the feasibility of using Large Language Models (LLMs), particularly GPT-4, as a straightforward, adaptable solution for controlling manufacturing systems, specifically, mobile robot scheduling. We introduce an LLM-based control framework to assign mobile robots to different machines in robot assisted serial production lines, evaluating its performance in terms of system throughput. Our proposed framework outperforms traditional scheduling approaches such as First-Come-First-Served (FCFS), Shortest Processing Time (SPT), and Longest Processing Time (LPT). While it achieves performance that is on par with state-of-the-art methods like Multi-Agent Reinforcement Learning (MARL), it offers a distinct advantage by delivering comparable throughput without the need for extensive retraining. These results suggest that the proposed LLM-based solution is well-suited for scenarios where technical expertise, computational resources, and financial investment are limited, while decision transparency and system scalability are critical concerns.
Related papers
- An LLM-enabled Multi-Agent Autonomous Mechatronics Design Framework [49.633199780510864]
This work proposes a multi-agent autonomous mechatronics design framework, integrating expertise across mechanical design, optimization, electronics, and software engineering.
operating primarily through a language-driven workflow, the framework incorporates structured human feedback to ensure robust performance under real-world constraints.
A fully functional autonomous vessel was developed with optimized propulsion, cost-effective electronics, and advanced control.
arXiv Detail & Related papers (2025-04-20T16:57:45Z) - From Large to Super-Tiny: End-to-End Optimization for Cost-Efficient LLMs [23.253571170594455]
Large Language Models (LLMs) have significantly advanced artificial intelligence.
This paper introduces a three-stage cost-efficient end-to-end LLM deployment pipeline.
Our approach yields a super tiny model optimized for cost and performance in online systems.
arXiv Detail & Related papers (2025-04-18T05:25:22Z) - IMPROVE: Iterative Model Pipeline Refinement and Optimization Leveraging LLM Agents [17.301758094000125]
Large language model (LLM) agents have emerged as a promising solution to automate the development of computer vision models.<n>We introduce Iterative Refinement, a novel strategy for LLM-driven ML pipeline design.<n>Iterative Refinement improves stability, interpretability, and overall model performance.
arXiv Detail & Related papers (2025-02-25T01:52:37Z) - Resource Allocation for Stable LLM Training in Mobile Edge Computing [11.366306689957353]
This paper explores a collaborative training framework that integrates mobile users with edge servers to optimize resource allocation.
We formulate a multi-objective optimization problem to minimize the total energy consumption and delay during training.
We also address the common issue of instability in model performance by incorporating stability enhancements into our objective function.
arXiv Detail & Related papers (2024-09-30T12:36:27Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.<n>Our proposed framework incorporates retrieval-augmented generation (RAG) to enhance the system's ability to acquire domain-specific knowledge and generate solutions.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Accelerate Presolve in Large-Scale Linear Programming via Reinforcement
Learning [92.31528918811007]
We propose a simple and efficient reinforcement learning framework -- namely, reinforcement learning for presolve (RL4Presolve) -- to tackle (P1)-(P3) simultaneously.
Experiments on two solvers and eight benchmarks (real-world and synthetic) demonstrate that RL4Presolve significantly and consistently improves the efficiency of solving large-scale LPs.
arXiv Detail & Related papers (2023-10-18T09:51:59Z) - Reinforcement Learning of Display Transfer Robots in Glass Flow Control
Systems: A Physical Simulation-Based Approach [6.229216953398305]
A flow control system is a critical concept for increasing the production capacity of manufacturing systems.
To solve the scheduling optimization problem related to the flow control, existing methods depend on a design by domain human experts.
We propose a method to implement a physical simulation environment and devise a feasible flow control system design using a transfer robot in display manufacturing.
arXiv Detail & Related papers (2023-10-12T02:10:29Z) - TranDRL: A Transformer-Driven Deep Reinforcement Learning Enabled Prescriptive Maintenance Framework [58.474610046294856]
Industrial systems demand reliable predictive maintenance strategies to enhance operational efficiency and reduce downtime.
This paper introduces an integrated framework that leverages the capabilities of the Transformer model-based neural networks and deep reinforcement learning (DRL) algorithms to optimize system maintenance actions.
arXiv Detail & Related papers (2023-09-29T02:27:54Z) - Machine Learning Meets Advanced Robotic Manipulation [48.6221343014126]
The paper reviews cutting edge technologies and recent trends on machine learning methods applied to real-world manipulation tasks.
The rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue.
arXiv Detail & Related papers (2023-09-22T01:06:32Z) - A Memetic Algorithm with Reinforcement Learning for Sociotechnical
Production Scheduling [0.0]
This article presents a memetic algorithm with applying deep reinforcement learning (DRL) to flexible job shop scheduling problems (DRC-FJSSP)
From research projects in industry, we recognize the need to consider flexible machines, flexible human workers, worker capabilities, setup and processing operations, material arrival times, complex job paths with parallel tasks for bill of material manufacturing, sequence-dependent setup times and (partially) automated tasks in human-machine-collaboration.
arXiv Detail & Related papers (2022-12-21T11:24:32Z) - Learning Optimization Proxies for Large-Scale Security-Constrained
Economic Dispatch [11.475805963049808]
Security-Constrained Economic Dispatch (SCED) is a fundamental optimization model for Transmission System Operators (TSO)
This paper proposes to learn an optimization proxy for SCED, i.e., a Machine Learning (ML) model that can predict an optimal solution for SCED in milliseconds.
Numerical experiments are reported on the French transmission system, and demonstrate the approach's ability to produce, within a time frame that is compatible with real-time operations.
arXiv Detail & Related papers (2021-12-27T00:44:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.