論文の概要: Neural Network Surrogate Model for Junction Temperature and Hotspot Position in $3$D Multi-Layer High Bandwidth Memory (HBM) Chiplets under Varying Thermal Conditions
- arxiv url: http://arxiv.org/abs/2503.04049v1
- Date: Thu, 06 Mar 2025 03:05:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 15:58:52.301167
- Title: Neural Network Surrogate Model for Junction Temperature and Hotspot Position in $3$D Multi-Layer High Bandwidth Memory (HBM) Chiplets under Varying Thermal Conditions
- Title(参考訳): 可変熱条件下での3D多層高帯域メモリ(HBM)チップレットの接合温度とホットスポット位置に対するニューラルネットワークサロゲートモデル
- Authors: Chengxin Zhang, Yujie Liu, Quan Chen,
- Abstract要約: 本研究では3次元チップレットにおける接合温度とホットスポット位置の高速予測のためのデータ駆動ニューラルネットワークモデルを開発する。
パラメータ空間では考慮されない他の熱条件に対して良い一般化性を示す。
これは、高性能コンピューティングアプリケーションにおける熱管理と性能を改善するための貴重なツールである。
- 参考スコア(独自算出の注目度): 6.277496992820668
- License:
- Abstract: As the demand for computational power increases, high-bandwidth memory (HBM) has become a critical technology for next-generation computing systems. However, the widespread adoption of HBM presents significant thermal management challenges, particularly in multilayer through-silicon-via (TSV) stacked structures under varying thermal conditions, where accurate prediction of junction temperature and hotspot position is essential during the early design. This work develops a data-driven neural network model for the fast prediction of junction temperature and hotspot position in 3D HBM chiplets. The model, trained with a data set of $13,494$ different combinations of thermal condition parameters, sampled from a vast parameter space characterized by high-dimensional combination (up to $3^{27}$), can accurately and quickly infer the junction temperature and hotspot position for any thermal conditions in the parameter space. Moreover, it shows good generalizability for other thermal conditions not considered in the parameter space. The data set is constructed using accurate finite element solvers. This method not only minimizes the reliance on costly experimental tests and extensive computational resources for finite element analysis but also accelerates the design and optimization of complex HBM systems, making it a valuable tool for improving thermal management and performance in high-performance computing applications.
- Abstract(参考訳): 計算能力の需要が高まるにつれて、ハイ帯域メモリ(HBM)は次世代コンピューティングシステムにとって重要な技術になりつつある。
しかし,HBMが広く採用されているため,特に熱条件の異なる多層スルーシリコン・ビア(TSV)積層構造では,接合温度とホットスポット位置の正確な予測が早期設計において不可欠である。
本研究では3次元HBMチップレットにおける接合温度とホットスポット位置の高速予測のためのデータ駆動ニューラルネットワークモデルを開発する。
このモデルは、13,494ドルの異なる熱条件パラメータの組み合わせのデータセットで訓練され、高次元の組み合わせ(最大3^{27}$)によって特徴づけられる広大なパラメータ空間からサンプリングされ、パラメータ空間内の任意の熱条件に対する接合温度とホットスポット位置を的確に推測することができる。
さらに、パラメータ空間では考慮されない他の熱条件に対して良い一般化性を示す。
データセットは、正確な有限要素ソルバを用いて構築される。
この手法は、有限要素解析のためのコストのかかる実験や広範な計算資源への依存を最小限に抑えるだけでなく、複雑なHBMシステムの設計と最適化を加速し、高性能コンピューティングアプリケーションにおける熱管理と性能を向上させる貴重なツールとなる。
関連論文リスト
- Machine Learning-Assisted Thermoelectric Cooling for On-Demand Multi-Hotspot Thermal Management [12.515874333424929]
熱電冷却器 (TEC) は、高度電子システムにおける局所ホットスポットの直接冷却とアクティブな熱管理のための有望なソリューションを提供する。
TECは空間冷却、暖房、電力消費に大きなトレードオフをもたらす。
本研究では,大域的最適温度を達成できる熱電冷却器の機械学習支援最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-20T18:35:45Z) - Deep encoder-decoder hierarchical convolutional neural networks for conjugate heat transfer surrogate modeling [0.0]
共役熱伝達(CHT)解析は多くのエネルギー系の設計に不可欠である。
高忠実CHT数値シミュレーションは計算集約的である。
我々は,CHT解析のためのモジュール型ディープエンコーダ・デコーダ階層型畳み込みニューラルネットワーク(DeepEDH)を開発した。
論文 参考訳(メタデータ) (2023-11-24T21:45:11Z) - DeepOHeat: Operator Learning-based Ultra-fast Thermal Simulation in
3D-IC Design [7.112313433801361]
DeepOHeatは、熱方程式系の温度場を予測する物理を意識した演算子学習フレームワークである。
未確認のテストケースでは、よく訓練されたDeepOHeatが正確な結果が得られる。
論文 参考訳(メタデータ) (2023-02-25T01:18:48Z) - Long Horizon Temperature Scaling [90.03310732189543]
LHTS(Long Horizon Temperature Scaling)は、温度スケールの関節分布をサンプリングするための新しい手法である。
温度依存性のLHTS目標を導出し, 温度範囲のモデルを微調整することで, 制御可能な長地平線温度パラメータで生成可能な単一モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-02-07T18:59:32Z) - Does Thermal Really Always Matter for RGB-T Salient Object Detection? [153.17156598262656]
本稿では,RGB-T有意物体検出(SOD)タスクを解決するために,TNetというネットワークを提案する。
本稿では,画像のグローバル照度を推定するためのグローバル照度推定モジュールを提案する。
一方, 2段階の局所化と相補化モジュールを導入し, 熱的特徴の物体位置化キューと内部整合キューをRGBモダリティに転送する。
論文 参考訳(メタデータ) (2022-10-09T13:50:12Z) - Rapid Flow Behavior Modeling of Thermal Interface Materials Using Deep
Neural Networks [0.20999222360659608]
熱界面材料(TIM)は電子包装に広く使われている。
本稿では,TIMの拡散挙動をモデル化する軽量長方形を提案する。
このモデルから得られたデータに基づいて,ニューラルネットワーク(ANN)をトレーニングすることにより,計算を高速化する。
論文 参考訳(メタデータ) (2022-08-08T10:44:17Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
インテリジェント・リフレクション・サーフェス(IRS)は将来の無線ネットワークに広く応用されることが想定されている。
本稿では,エネルギー収穫能力を備えた協調型IRSデバイスを用いたマルチユーザ通信システムについて検討する。
論文 参考訳(メタデータ) (2022-03-26T20:37:14Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
本稿では,エッジノードとリモートノード間のモデル圧縮と時間変化モデル分割を利用して,エッジデバイスにおける総エネルギーコストを削減する手法を提案する。
提案手法は, 検討されたベースラインと比較して, エネルギー消費が最小限であり, 排出コストが$CO$となる。
論文 参考訳(メタデータ) (2021-06-02T07:36:27Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
奇数パリティ部分空間の適切な包含は、中間温度範囲における最大忠実度感受性の向上につながることを示す。
正しい低温の挙動は、2つの最も低い多体エネルギー固有状態を含む近似によって捉えられる。
論文 参考訳(メタデータ) (2021-05-11T14:08:02Z) - Role of topology in determining the precision of a finite thermometer [58.720142291102135]
低接続性は、温度計を低温で動作させるためのリソースであることに気付きました。
位置測定により達成可能な精度を,エネルギー測定に対応する最適値と比較する。
論文 参考訳(メタデータ) (2021-04-21T17:19:42Z) - Thermal Neural Networks: Lumped-Parameter Thermal Modeling With
State-Space Machine Learning [0.0]
電力システムの熱モデルには、リアルタイム能力と高い推定精度の両方が必要である。
本研究では,熱伝達に基づくラムド型パラメータモデルとして,熱ニューラルネットワーク(TNN)を導入し,両者を統一した。
TNNは状態空間表現を通じて物理的に解釈可能な状態を持ち、エンドツーエンドのトレーニング可能であり、その設計に材料、幾何学、専門知識を必要としない。
論文 参考訳(メタデータ) (2021-03-30T13:15:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。