LiteChain: A Lightweight Blockchain for Verifiable and Scalable Federated Learning in Massive Edge Networks
- URL: http://arxiv.org/abs/2503.04140v1
- Date: Thu, 06 Mar 2025 06:38:58 GMT
- Title: LiteChain: A Lightweight Blockchain for Verifiable and Scalable Federated Learning in Massive Edge Networks
- Authors: Handi Chen, Rui Zhou, Yun-Hin Chan, Zhihan Jiang, Xianhao Chen, Edith C. H. Ngai,
- Abstract summary: Leveraging blockchain in Federated Learning (FL) emerges as a new paradigm for secure collaborative learning on Massive Edge Networks (MENs)<n>We propose a lightweight blockchain for verifiable and scalable FL, namely LiteChain, to provide efficient and secure services in MENs.<n>We introduce a Comprehensive Byzantine Fault Tolerance (CBFT) consensus mechanism and a secure update mechanism to ensure the security of model transactions through LiteChain.
- Score: 9.88069294667058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Leveraging blockchain in Federated Learning (FL) emerges as a new paradigm for secure collaborative learning on Massive Edge Networks (MENs). As the scale of MENs increases, it becomes more difficult to implement and manage a blockchain among edge devices due to complex communication topologies, heterogeneous computation capabilities, and limited storage capacities. Moreover, the lack of a standard metric for blockchain security becomes a significant issue. To address these challenges, we propose a lightweight blockchain for verifiable and scalable FL, namely LiteChain, to provide efficient and secure services in MENs. Specifically, we develop a distributed clustering algorithm to reorganize MENs into a two-level structure to improve communication and computing efficiency under security requirements. Moreover, we introduce a Comprehensive Byzantine Fault Tolerance (CBFT) consensus mechanism and a secure update mechanism to ensure the security of model transactions through LiteChain. Our experiments based on Hyperledger Fabric demonstrate that LiteChain presents the lowest end-to-end latency and on-chain storage overheads across various network scales, outperforming the other two benchmarks. In addition, LiteChain exhibits a high level of robustness against replay and data poisoning attacks.
Related papers
- Zaptos: Towards Optimal Blockchain Latency [52.30047458198369]
We introduce Zaptos, a parallel pipelined architecture designed to minimize end-to-end latency.<n>Zaptos achieves a throughput of 20,000 transactions per second with sub-second latency.
arXiv Detail & Related papers (2025-01-18T00:22:22Z) - Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - Voltran: Unlocking Trust and Confidentiality in Decentralized Federated Learning Aggregation [12.446757264387564]
We present Voltran, an innovative hybrid platform designed to achieve trust, confidentiality, and robustness for Federated Learning (FL)
We offload the FL aggregation into TEE to provide an isolated, trusted and customizable off-chain execution.
We provide strong scalability on multiple FL scenarios by introducing a multi-SGX parallel execution strategy.
arXiv Detail & Related papers (2024-08-13T13:33:35Z) - Enhancing Data Integrity and Traceability in Industry Cyber Physical Systems (ICPS) through Blockchain Technology: A Comprehensive Approach [0.0]
This study explores the potential of blockchain in enhancing data integrity and traceability within Industry Cyber-Physical Systems (ICPS)
ICPS is pivotal in managing critical infrastructure like manufacturing, power grids, and transportation networks.
This research unearths various blockchain applications in ICPS, including supply chain management, quality control, contract management, and data sharing.
arXiv Detail & Related papers (2024-05-08T06:22:37Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
We design a Graph Attention Network (GAT)-based reliable block propagation optimization framework for blockchain-enabled Web 3.0.
To achieve the reliability of block propagation, we introduce a reputation mechanism based on the subjective logic model.
Considering that the GAT possesses the excellent ability to process graph-structured data, we utilize the GAT with reinforcement learning to obtain the optimal block propagation trajectory.
arXiv Detail & Related papers (2024-03-20T01:58:38Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - A Survey on Secure and Private Federated Learning Using Blockchain:
Theory and Application in Resource-constrained Computing [0.8029049649310213]
Federated Learning (FL) has gained widespread popularity in recent years due to the fast booming of advanced machine learning and artificial intelligence.
The performance of the FL process can be threatened and reached a bottleneck due to the growing cyber threats and privacy violation techniques.
To expedite the proliferation of FL process, the integration of blockchain for FL environments has drawn prolific attention from the people of academia and industry.
arXiv Detail & Related papers (2023-03-24T00:40:08Z) - Secure and Efficient Federated Learning Through Layering and Sharding
Blockchain [15.197940168865271]
This paper proposes ChainFL, a novel two-layer blockchain-driven Federated Learning system.
It splits the Internet network into multiple shards within the subchain layer, effectively reducing the scale of information exchange.
It also employs a Direct Acyclic Graph (DAG)-based mainchain as the mainchain layer, enabling parallel and asynchronous cross-shard validation.
arXiv Detail & Related papers (2021-04-27T12:19:07Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.