論文の概要: GBT-SAM: Adapting a Foundational Deep Learning Model for Generalizable Brain Tumor Segmentation via Efficient Integration of Multi-Parametric MRI Data
- arxiv url: http://arxiv.org/abs/2503.04325v3
- Date: Tue, 13 May 2025 13:15:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 14:37:18.722208
- Title: GBT-SAM: Adapting a Foundational Deep Learning Model for Generalizable Brain Tumor Segmentation via Efficient Integration of Multi-Parametric MRI Data
- Title(参考訳): GBT-SAM:多パラメータMRIデータの効率的な統合による一般化可能な脳腫瘍分離のための基礎的深層学習モデルの適用
- Authors: Cecilia Diana-Albelda, Roberto Alcover-Couso, Álvaro García-Martín, Jesus Bescos, Marcos Escudero-Viñolo,
- Abstract要約: GBT-SAMはパラメータ効率のよいディープラーニングフレームワークで,Segment Anything Modelをmp-MRIデータに適用する。
本モデルは,深度認識モジュールを組み込んだ2段階の微調整戦略により,スライス間相関を抽出する。
BraTSアダルトグリオーマデータセットで93.54のDiceスコアを達成し、メニンギオーマ、小児グリオーマ、サブサハラグリオーマデータセットで堅牢なパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 5.7802171590699984
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Gliomas are aggressive brain tumors that require accurate imaging-based diagnosis, with segmentation playing a critical role in evaluating morphology and treatment decisions. Manual delineation of gliomas is time-consuming and prone to variability, motivating the use of deep learning to improve consistency and alleviate clinical workload. However, existing methods often fail to fully exploit the information available in multi-parametric MRI (mp-MRI), particularly inter-slice contextual features, and typically require considerable computational resources while lacking robustness across tumor type variations. We present GBT-SAM, a parameter-efficient deep learning framework that adapts the Segment Anything Model (SAM), a large-scale vision model, to volumetric mp-MRI data. GBT-SAM reduces input complexity by selecting fewer than 2.6\% of slices per scan while incorporating all four MRI modalities, preserving essential tumor-related information with minimal cost. Furthermore, our model is trained by a two-step fine-tuning strategy that incorporates a depth-aware module to capture inter-slice correlations and lightweight adaptation layers, resulting in just 6.5M trainable parameters, which is the lowest among SAM-based approaches. GBT-SAM achieves a Dice Score of 93.54 on the BraTS Adult Glioma dataset and demonstrates robust performance on Meningioma, Pediatric Glioma, and Sub-Saharan Glioma datasets. These results highlight GBT-SAM's potential as a computationally efficient and domain-robust framework for brain tumor segmentation using mp-MRI. Our code and models are available at https://github.com/vpulab/med-sam-brain .
- Abstract(参考訳): グリオーマは、画像に基づく正確な診断を必要とする攻撃的な脳腫瘍であり、形態や治療の決定を評価する上で、セグメンテーションが重要な役割を果たしている。
手動によるグリオーマのデライン化は時間を要するため、変動しにくいため、深層学習による一貫性の向上と臨床作業の軽減を動機としている。
しかし、既存の方法では、マルチパラメトリックMRI(mp-MRI)で利用可能な情報、特にスライス間コンテキストの特徴を十分に活用することができず、通常、腫瘍タイプのバリエーションに頑健さを欠き、かなりの計算資源を必要とする。
本稿では,大規模視覚モデルであるSegment Anything Model(SAM)をボリュームmp-MRIデータに適用するパラメータ効率のよいディープラーニングフレームワークであるGBT-SAMを提案する。
GBT-SAMは、スキャン毎に2.6\%未満のスライスを選択することで入力の複雑さを減らし、4つのMRIモダリティをすべて取り入れ、必要不可欠な腫瘍関連情報を最小限のコストで保存する。
さらに,本モデルでは,スライス間相関と軽量適応層を捕捉する深度認識モジュールを組み込んだ2段階の微調整手法により,SAMに基づくアプローチの中で最も低い6.5万個のトレーニング可能なパラメータが得られた。
GBT-SAMは、BraTSアダルトグリオーマデータセットで93.54のDiceスコアを達成し、メニンギオーマ、小児グリオーマ、サブサハラグリオーマデータセットで堅牢なパフォーマンスを示す。
これらの結果は, mp-MRIを用いた脳腫瘍の分節化のための, 計算効率が高く, ドメイン・ロバストなフレームワークとしてのGBT-SAMの可能性を強調した。
私たちのコードとモデルはhttps://github.com/vpulab/med-sam-brain で利用可能です。
関連論文リスト
- MAST-Pro: Dynamic Mixture-of-Experts for Adaptive Segmentation of Pan-Tumors with Knowledge-Driven Prompts [54.915060471994686]
MAST-Proは,ダイナミックなMixture-of-Experts(D-MoE)とパン腫瘍セグメンテーションのための知識駆動プロンプトを統合した新しいフレームワークである。
具体的には、テキストと解剖学的プロンプトは、腫瘍表現学習を導くドメイン固有の事前情報を提供し、D-MoEは、ジェネリックと腫瘍固有の特徴学習のバランスをとる専門家を動的に選択する。
マルチ解剖学的腫瘍データセットの実験では、MAST-Proは最先端のアプローチよりも優れており、トレーニング可能なパラメータを91.04%削減し、平均改善の5.20%を達成している。
論文 参考訳(メタデータ) (2025-03-18T15:39:44Z) - Enhanced MRI Representation via Cross-series Masking [48.09478307927716]
自己教師型でMRI表現を効果的に学習するためのクロスシリーズ・マスキング(CSM)戦略
メソッドは、パブリックデータセットと社内データセットの両方で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-12-10T10:32:09Z) - Magnetic Resonance Imaging Feature-Based Subtyping and Model Ensemble for Enhanced Brain Tumor Segmentation [6.14919256198409]
本稿では,最先端セグメンテーションモデルを統合する深層学習に基づくアンサンブル手法を提案する。
BraTSデータセットに存在する腫瘍の不均一性を考えると、この手法はセグメンテーションモデルの精度と一般化性を高める。
論文 参考訳(メタデータ) (2024-12-05T12:00:00Z) - Intraoperative Glioma Segmentation with YOLO + SAM for Improved Accuracy in Tumor Resection [1.9461727843485295]
グリオーマは、健康な組織との類似性から、重要な外科的課題を呈する。
MRI画像は、脳のシフトなどの要因により、手術中は効果がないことが多い。
本稿では,You Only Look Once Version 8 (Yv8) と Segment Anything Model Vision Transformer-base を組み合わせたディープラーニングパイプラインを提案する。
論文 参考訳(メタデータ) (2024-08-27T07:58:08Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
Mask-Enhanced SAM (M-SAM) は, 腫瘍の3次元セグメント化に適した革新的なアーキテクチャである。
本稿では,M-SAM内におけるMask-Enhanced Adapter (MEA) を提案する。
我々のM-SAMは高いセグメンテーション精度を達成し、またロバストな一般化を示す。
論文 参考訳(メタデータ) (2024-03-09T13:37:02Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Fully Automated Tumor Segmentation for Brain MRI data using Multiplanner
UNet [0.29998889086656577]
本研究は,3つの挑戦的データセットにまたがる腫瘍サブリージョンの分割におけるマルチプランナーU-Net(MPUnet)アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2024-01-12T10:46:19Z) - Segment Anything Model for Brain Tumor Segmentation [3.675657219384998]
グリオーマ(Glioma)は、個体に重大な健康リスクをもたらす脳腫瘍である。
Meta AIがリリースしたSegment Anything Modelは、画像セグメンテーションの基本モデルであり、ゼロサンプルの一般化機能に優れています。
そこで本研究では, SAMの脳腫瘍セグメンテーションにおける性能について検討し, モデル微調整がなければ, SAMと現状SOTAモデルとの間には相違があることを見出した。
論文 参考訳(メタデータ) (2023-09-15T14:33:03Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - QuickTumorNet: Fast Automatic Multi-Class Segmentation of Brain Tumors [0.0]
3D MRIボリュームからの脳腫瘍の手動分割は、時間のかかる作業です。
私たちのモデルであるQuickTumorNetは、高速で信頼性があり、正確な脳腫瘍セグメンテーションを示しました。
論文 参考訳(メタデータ) (2020-12-22T23:16:43Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
本研究では, 異常セグメンテーション性能の向上と, ネイティブ解像度で入力データのより鮮明な再構成を行う汎用能力を示す。
ラプラシアンピラミッドのモデリングにより、複数のスケールで病変のデライン化と集約が可能になる。
論文 参考訳(メタデータ) (2020-06-23T09:20:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。